To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Entero libre de cuadrados

De Wikipedia, la enciclopedia libre

Un número entero n es libre de cuadrados si no existe un número primo p tal que p2 divide a n. Esto quiere decir que los factores primos de n son todos distintos, luego

De esta forma, 10=2·5 es libre de cuadrados, pero 20=22·5 no lo es, porque es divisible por un cuadrado. Los primeros enteros libres de cuadrados son:

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ... (sucesión A005117 en OEIS)

Alternativamente, si el número a al expresarlo como producto de factores primos, todos ellos tienen exponente 1, se dice que a es entero exento de cuadrados.[1]

Función generadora de Dirichlet

Si q(n)=1, donde n es un entero que no contiene ningún cuadrado en su factorización y q(n)=0 donde n contiene uno o más cuadrados en su factorización, la función q(n) viene definida como , siendo μ(n) la función de Möbius. Entonces, la función generadora de Dirichlet para los enteros libres de cuadrados es

donde ζ(s) es la función zeta de Riemann. Esto puede ser visto fácilmente del producto de Euler

Distribución de los números libres de cuadrados

Si Q(x) indica el número de números libres de cuadrados menores o iguales que x, entonces

(véase π).
La densidad de los números libres de cuadrados es, por tanto,

Referencias

  1. Niven y Zuckerman: Introducción a la teoría de números, Limusa, México 1985

Enlaces externos

Esta página se editó por última vez el 11 oct 2019 a las 09:19.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.