To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Límite (teoría de categorías)

De Wikipedia, la enciclopedia libre

En teoría de categorías, una rama de la matemática, la noción abstracta de límite captura las propiedades esenciales de las construcciones universales tales como productos y límites inversos. La noción dual de colímite generaliza construcciones tales como uniones disjuntas, sumas directas, coproductos, pushouts y límites directos.

Los límites y colímites, como las nociones fuertemente relacionadas con propiedades universales y funtores adjuntos, existen a un gran nivel de abstracción. De manera que, para entenderlos, es útil estudiar primero los ejemplos específicos de esos conceptos que serán luego objeto de generalización.

Definición

Empezamos definiendo el cono (en el sentido teoría de categorías) de un funtor covariante , ayudándonos del siguiente diagrama, que constará de:

  • dos objetos de la categoría J: X e Y,
  • un morfismo f, de dicha categoría, f:XY,
  • las imágenes por F de los dos objetos X e Y,
  • la "F-imagen" del morfismo f (imagen de f por F: F(f)),
  • un objeto L de la categoría C, "vértice" del "cono", y
  • los conjuntos de morfismos X e Y (los llamamos igual que los objetos X e Y), que constan de todos los morfismos desde L a F(X), y desde L hacia F(Y).

Limitefuntor.png


Si el objeto en J es X, en la definición de cono que damos decimos "X" también al conjunto de flechas que van del objeto L sobre el que hacemos el cono hacia dicho X. Además, el cono sobre L lo denotaremos así: (L, X), queriendo decir que hacemos la colección de todas las familias de flechas que apuntan desde L, esto es, esos conjuntos de flechas "X" en la categoría codominio del funtor F y que hemos denominado "varias" para sugerir que pueden ser varias.

Un límite del funtor F es entonces un "cono universal". Esto es, decimos que el cono (L, X) es un límite para el funtor F si y sólo si para todo otro cono (N, X) de F, existe un único morfismo u: N L tal que X · u = X. Esto es, podemos decir que los morfismos X factorizan a través de L con la factorización única u.

Las definiciones de colímite y de cocono se obtienen considerando la definición dual a las de límite y cono.

Véase también

Referencias

Enlaces externos

Esta página se editó por última vez el 11 oct 2019 a las 09:23.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.