To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Involución (matemática)

De Wikipedia, la enciclopedia libre

Una involución es una función del tipo:  f : X → X {\displaystyle f:X\to X}  que aplicada dos veces regresa al dato inicial.
Una involución es una función del tipo: que aplicada dos veces regresa al dato inicial.

En matemática, una involución o función involutiva es una función matemática que es su propia inversa:

Definida la función:

Esta función cumple la propiedad involutiva si:

para todo x de A, se cumple que la función de la función de x es x.

O, de otra manera:

 ;

Propiedades

Toda involución es una aplicación biyectiva. La función identidad es un ejemplo trivial de involución:

esto es:

para todo a de A, se cumple que la identidad de la identidad de a es a.

El número de involuciones existentes en un conjunto de n elementos viene dado por la siguiente relación de recurrencia:

Los primeros términos de esta secuencia son 1, 1, 2, 4, 10, 26, 76, 232, etc.[1]

Ejemplos

Ejemplos sencillos son la multiplicación por −1 un número real:

dado que:

Para todo x número real, se cumple que el opuesto del opuesto de x es x.

El inverso multiplicativo de números reales sin el cero:

si vemos que:

El complemento de un conjunto en teoría de conjuntos:

dado que:

Los complejos conjugados () en variable compleja; la inversión geométrica; y cifrados como el ROT13 y el de Trithemius.

Véase también

Fuentes y referencias

  • Todd A. Ell; Stephen J. Sangwine (2007), «Quaternion involutions and anti-involutions», Computers & Mathematics with Applications 53 (1): 137-143, doi:10.1016/j.camwa.2006.10.029  ..
Esta página se editó por última vez el 4 sep 2019 a las 15:13.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.