To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Identidad (matemática)

De Wikipedia, la enciclopedia libre

En matemáticas, una identidad es la constatación de que dos objetos que matemáticamente se escriben diferente, son de hecho el mismo objeto.[1]​ En particular, una identidad es a una igualdad entre dos expresiones, lo que es cierto sean cuales sean los valores de las distintas variables empleadas.[2]​ Las identidades, al confirmarse invariablemente su igualdad, suelen utilizarse para transformar una expresión matemática en otra equivalente, particularmente para resolver una ecuación.

Ejemplos

Lo elemental

  • a + 0 = a para cualquier elemento
[3]

relaciona de manera fundamentales 0; 1; i; π; y e. Esta identidad no relaciona variables sino únicamente constantes matemáticas.

La Identidad de Euler es un caso particular de otra identidad más general dada por la fórmula de Euler para ángulos distintos de pi.

En trigonometría, existen numerosas identidades que facilitan los cálculos. Por ejemplo,

es una identidad, cierta para cualquier número real o complejo .

  • Con funciones hiperbólicas

Identidades notables

Algunas identidades algebraicas se denominan «notables» y facilitan los cálculos o la factorización de expresiones polinómicas.

Por ejemplo el producto notable , que es cierto sean cuales sean los elementos y de un anillo conmutativo.

Identidades aritméticas

Algunas de las identidades aritméticas más notables son la suma de términos de una progresión aritmética, entre la que se encuentra la suma de los n primeros números naturales (desde el 1 hasta n),

las fórmulas de Faulhaber para la suma de las potencias de los primeros n números naturales o la suma de los cubos de tres números naturales consecutivos, cuyo valor es múltiplo de 9

Identidades algebraicas

  • La diferencia de cuadrados de dos cantidades cualesquiera es igual al producto de la suma de tales cantidades por la diferencia de las mismas cantidades.
  • Factorización de la diferencia de cubos de dos variables: , como el producto de la diferencia de las variables por el trinomio simétrico de segundo grado en dichas variables.

Identidades trigonométricas

En la trigonometría circular

En trigonométrica hiperbólica

  1. ; donde . «Fórmula de Moivre».

identidades logarítmicas

Se exige que la base del sistema de logaritmos sea un número real positivo diferente de 1. Sólo tienen logaritmo los reales positivos, en este caso llamados “logaritmando”.

  • . Producto en suma.
  • . Cambio de base.

Referencias

  1. Weisstein, Eric W. «Identidad». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research. Consultado el 19 de marzo de 2012. 
  2. Simmons, Bruce (2011). «Identity (Equation or Inequality)». Mathwords (en inglés). Consultado el 19 de marzo de 2012. 
  3. Esta identidad es muy puntual, para cinco números complejos, e involucra una propuesta teórica i al cuadrado = -1
Esta página se editó por última vez el 16 nov 2020 a las 08:29.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.