To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Homología (matemática)

De Wikipedia, la enciclopedia libre

En matemática (especialmente en topología algebraica y en álgebra homológica), la homología (en Griego homos = idéntico) es un procedimiento general para asociar un objeto matemático dado (por ejemplo un espacio topológico o un grupo) con una sucesión de grupos abelianos (o en contextos más generales módulos o cualquier elemento sobre una categoría abeliana), es decir una acción functorial.

Para un espacio topológico, los grupos de homología son generalmente mucho más fáciles de computar que los grupos de homotopía, y consecuentemente, uno habitualmente tendrá un trabajo más simple con homología para ayudar en la clasificación de espacios.

Una observación que motiva esta teoría es que a veces podemos distinguir parejas de espacios topológicos, por medio del estudio de sus agujeros. Por ejemplo:

  • Un círculo no es equivalente a un disco porque el círculo tiene un agujero en medio de él.
  • Una esfera no es equivalente a un círculo, ya que la esfera encierra un agujero 2-dimensional, mientras que el círculo encierra un agujero 1-dimensional.

En general, no es inmediato ni definir lo que es un agujero, ni distinguir distintos tipos de agujeros. Es por ello que la motivación original de homología fue definir y clasificar los agujeros de un espacio topológico, por ejemplo en una variedad.

La definición de los grupos de homología se fundamenta en los conceptos de ciclos, - que son subvariedades cerradas - fronteras, -que son ciclos y a la vez fronteras de una subvariedad-, y clases de homología -que son las clases de equivalencia que obtenemos al cocientar los ciclos módulo las fronteras. Entonces, cada clase de homología está representada por un ciclo que no es frontera de ninguna subvariedad, e indica la ausencia de una variedad cuya frontera sería dicho ciclo. Así mismo, cada generador indica la existencia de un agujero y las propiedades del grupo indican la estructura del espacio topológico, así como lo hacen las nociones de dimensión y orientabilidad.

Existen diferentes teorías de homología. Dependiendo del objeto matemático que estemos estudiando - por ejemplo, un espacio topológico o un grupo-, podremos asociarle algunas de estas teorías. Cuando podemos describir geométricamente a dicho objeto, el n-avo grupo de homología describe el comportamiento del objeto en la n-ava dimensión.

Definición

Se define el n-ésimo grupo de homología asociado a un complejo de cadenas

donde

como el grupo abeliano

También se utiliza la notación

, donde es el complejo de cadenas respectivo.

Se llama los ciclos en y se llama las fronteras de .

Se dice que la homología mide la falta de exactitud de un complejo de cadenas en cada uno de sus eslabones. Por ejemplo si tenemos un complejo de cadenas corto

entonces sus correspondientes grup(os de homología son:

Es obvio que si la sucesión fuese exacta, entonces estos grupos serían triviales (=0).

Véase también

Referencias

Enlaces externos

Esta página se editó por última vez el 21 ene 2021 a las 06:21.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.