To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Grupo especial ortogonal

De Wikipedia, la enciclopedia libre

El grupo especial ortogonal (o grupo ortonormal especial), abreviado usualmente , es un grupo de Lie que puede ser representado como un subgrupo del grupo ortogonal . El grupo real SO(n) se puede identificar con el grupo de rotaciones del espacio .

El grupo especial ortogonal ordinariamente se toma como real, es decir, aunque también se han definido generalizaciones complejas .

YouTube Encyclopedic

  • 1/3
    Views:
    2 771
    513
    139 410
  • Grupo general lineal GL ,2,R
  • DIEDRO E TRIEDRO
  • Projections onto subspaces | Linear Algebra | Khan Academy

Transcription

Propiedades generales

  1. tiene dimensión .
  2. es conexo.

Grupos SO(n,R) reales

El grupo SO(2)

El grupo especial ortogonal real, puede identificarse con el grupo de rotaciones del plano euclídeo. Y por tanto se trata de un grupo de Lie unidimensional. Existen varias representaciones de este grupo:

  1. SO(2) puede identificarse con el círculo unidad con la operación: donde
  2. SO(2) puede identificarse con los números complejos de módulo unidad de la forma
  3. SO(2) es isomorfo a U(1), y por tanto identificable con él.
  4. Finalmente SO(2) admite representación como matrices 2x2 de la forma:

Este grupo es no es simplemente conexo, su grupo recubridor universal es .

El grupo SO(3)

Este grupo es isomorfo al grupo de rotaciones del espacio euclídeo tridimensional y es representable por el conjunto de matrices ortogonales de 3x3 y con determinante igual la unidad.

El grupo SO(4)

Admite además de la representación como conjunto de matrices ortogonales de determinante uno, una representación basada en el álgebra de los cuaterniones.

De hecho cada uno de los subgrupos tridimensionales de las rotaciones isoclínicas de SO(4) puede ser identificado con el conjunto de los cuaterniones unitarios de la forma:

Siendo α, β y γ números reales.

Grupos SO(n,C) complejos

El grupo SO(2,C)

Este grupo resulta ser isomorfo al grupo multiplicativo de los complejos . Topológicamente pueden ser representados por el plano complejo al que se le ha quitado el punto de origen (z = 0) y por tanto es un grupo conexo aunque no simplemente conexo.

Grupos SO(p,q) reales

Estos grupos constituyen una generalización de los grupos SO(n) reales, algunos de los cuales resultan útiles en física por ejemplo el grupo SO(3,1) puede identificarse con un subgrupo del grupo de Lorentz especial que aparece en la teoría de la relatividad especial. Una propiedad interesante es de los grupos SO(p,q) generales es que no son conexos, por ejemplo el grupo de SO(3,1) incluye dos componentes SO+(3,1), formado por todas las transformaciones de Lorentz que no incluyen inversiones temporales o espaciales, y SO-(3,1) formado por transformaciones de Lorentz que incluyen inversión temporal y espacial simultáneas (sólo el primero de ellos es un subgrupo de SO(3,1)). Se tiene la siguiente cadena de inclusiones:

Donde el último grupo es precisamente el grupo de Lorentz.

Esta página se editó por última vez el 22 oct 2019 a las 16:34.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.