To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Geometría euclidiana

De Wikipedia, la enciclopedia libre

La geometría euclidiana,[1]euclídea o parabólica[2]​ es el estudio de las propiedades geométricas de los espacios euclídeos. Es aquella que estudia las propiedades geométricas del plano afín euclídeo real y del espacio afín euclídeo tridimensional real mediante el método sintético, introduciendo los cinco postulados de Euclides.

También es común (abusando del lenguaje) decir que una geometría es euclidiana si no es no euclidiana, es decir, si en dicha geometría se verifica el quinto postulado de Euclides. Esta denominación está cada vez más en desuso, debido a la pérdida de interés que va teniendo el tema de la posibilidad de trazar paralelas a una recta desde un punto exterior a la misma.

En ocasiones los matemáticos usan las expresiones geometría euclídea o geometría euclidiana para englobar geometrías de dimensiones superiores con propiedades similares. Sin embargo, con frecuencia son sinónimos de geometría plana o de geometría clásica.

Fragmento de Los elementos de Euclides, escrito en papiro, hallado en el yacimiento de Oxirrinco (Egipto).
Fragmento de Los elementos de Euclides, escrito en papiro, hallado en el yacimiento de Oxirrinco (Egipto).

Interpretaciones

Geometría del plano euclídeo

La geometría plana o geometría del plano euclídeo es una parte de la geometría que trata de aquellos elementos cuyos puntos están contenidos en un plano euclídeo. La geometría plana está considerada parte de la geometría euclídea, pues ésta estudia los elementos geométricos a partir de dos dimensiones.

Desde un punto de vista más general, el plano euclídeo se caracteriza por ser una variedad riemanniana de dimensión dos de curvatura nula y simplemente conexa.

Axiomas

Portada de Los elementos de Euclides, publicada en 1570 por Sir Henry Billingsley.
Portada de Los elementos de Euclides, publicada en 1570 por Sir Henry Billingsley.

La presentación tradicional de la geometría euclidiana se hace en un formato axiomático, en el que todos los teoremas («declaraciones verdaderas») derivan de un pequeño número de axiomas.[4]​ Un sistema axiomático es aquel que, a partir de un cierto número de proposiciones que se presuponen «evidentes» (conocidas como axiomas) y mediante deducciones lógicas, genera nuevas proposiciones cuyo valor de verdad es también lógico.

Postulados

Euclides planteó cinco postulados en su sistema:

  1. Dados dos puntos se puede trazar una recta que los une.
  2. Cualquier segmento puede prolongarse de manera continua en cualquier sentido.
  3. Se puede trazar una circunferencia con centro en cualquier punto y de cualquier radio.
  4. Todos los ángulos rectos son congruentes.
  5. Si una recta corta a otras dos formando, a un mismo lado de la secante, dos ángulos internos agudos, esas dos rectas prolongadas indefinidamente se cortan del lado en el que están dichos ángulos (ver quinto postulado de Euclides).

Este último postulado, que es conocido como el postulado de las paralelas, fue reformulado como:

5. Por un punto exterior a una recta, se puede trazar una única paralela a la recta dada.

Este postulado parece menos obvio que los otros cuatro, muchos geómetras intentaron deducirlo de los anteriores. Cuando intentaron reducirlo al absurdo negándolo, surgieron dos nuevas geometrías: la elíptica, también llamada geometría de Riemann o riemanniana (dada una recta y un punto exterior a ella, no existe ninguna recta que pase por el punto y sea paralela a la recta dada) y la hiperbólica o de Lobachevsky (dada una recta, existen varias rectas paralelas que pasan por un mismo punto exterior a esta). Puesto que ambas geometrías son consistentes, se deduce que el quinto postulado es, en efecto, un postulado que no puede deducirse de los otros cuatro. Estas geometrías, en las que el quinto postulado no es válido, se llaman geometrías no euclidianas.

Limitaciones

Una limitación del trabajo de Euclides fue no reconocer la posibilidad de sistemas geométricos perfectamente consistentes donde el quinto axioma no era válido, es decir, para Euclides y los geómetras posteriores hasta el siglo XVIII pasó inadvertida la posibilidad de geometrías no euclidianas, hasta el trabajo de Nikolái Lobachevski, Gauss y Riemann.

Si bien durante el siglo XIX se consideró a las geometrías no euclidianas un artefacto matemáticamente interesante e incluso con cierto interés práctico pero limitado, como es el caso de la trigonometría esférica usada en astronomía, en cierto modo se admitió que la geometría del espacio físico era euclidiana y, por tanto, las geometrías no euclidianas eran tan sólo un artificio abstracto útil para ciertos problemas, pero en modo alguno descripciones realistas del mundo. Sin embargo, el trabajo de Albert Einstein hizo ver que entre las necesidades de la física moderna están las geometrías no euclidianas para describir, por ejemplo, el espacio-tiempo curvo.

Alguno de los errores de Euclides fue omitir al menos dos postulados más:

  • Dos circunferencias cuyos centros estén separados por una distancia menor a la suma de sus radios, se cortan en dos puntos (Euclides lo utiliza en su primera construcción).
  • Dos triángulos con dos lados iguales y los ángulos comprendidos también iguales, son congruentes (afirmación equivalente al concepto de movimiento, que Euclides usa para su teorema cuarto sin definir explícitamente).

Euclidiano y euclídeo

Aunque desde el punto de vista lingüístico ambas formas tienen el mismo significado, hacer referencia a algo perteneciente o relativo al matemático griego Euclides, la Real Academia Española solo adopta como correcta la palabra «euclidiano», mientras que no recoge «euclídeo».[1][5]

Véase también

Notas y referencias

  1. a b Véase la entrada de «euclidiano» en su Diccionario de la lengua española.
  2. Siguiendo la analogía de las cónicas, una parábola es el caso límite entre una elipse y una hipérbola; en el mismo sentido que la geometría parabólica o euclidiana es el caso límite entre la geometría elíptica y la geometría hiperbólica
  3. Hay que indicar que se puede dotar a un mismo espacio vectorial real de distintos productos escalares, así que, incluso con esta acepción, existe una enorme ambigüedad, al no quedar claro ni la dimensión del espacio (en principio cualquier dimensión finita) ni el producto a escalar al que nos referimos. Este término puede permitir que cosas que no se parecen en nada a lo que entendemos por geometría euclidiana pueda llamarse precisamente geometría euclidiana.
  4. Las hipótesis de Euclides se analizan desde una perspectiva moderna en Wolfe, Harold E (2007). Introduction to non-Euclidean geometry (en inglés). Mill Press. p. 9. ISBN 1-4067-1852-1. 
  5. No obstante, es habitual el empleo del adjetivo «euclidiano» con el significado de «perteneciente o relativo a Euclides» (ej.: «geometría euclidiana»), y es habitual también el empleo del adjetivo «euclídeo» para calificar lo estudiado en esa geometría (ej.«espacio euclídeo»).

Enlaces externos

Esta página se editó por última vez el 28 may 2021 a las 04:31.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.