To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

De Wikipedia, la enciclopedia libre

En álgebra homológica, un funtor exacto es un funtor de una categoría abeliana a otra que preserva sucesiones exactas.

Definición formal

Sea A y C categorías abelianas y sea :F: AC un funtor, sea :0ABC0 una sucesión exacta corta de objetos de A entonces F es exacto si 0F(C)F(B)F(A)0 es de nuevo una sucesión exacta.

Otras definiciones relativas al funtor F son:

  • semi-exacto si F(A)F(B)F(C) es una sucesión exacta.
  • exacto izquierdo si 0F(A)F(B)F(C) es una sucesión exacta.
  • exacto derecho si F(A)F(B)F(C)0 es una sucesión exacta.
  • De hecho no es necesario empezar siempre con una sucesión exacta para garantizar ciertas propiedades del funtor F, se demuestra que son equivalente las siguientes definiciones.
  • F es un funtor exacto si ABC es una sucesión exacta entonces F(A)F(B)F(C) es una sucesión exacta.
  • F es un funtor exacto izquierdo si 0ABC es una sucesión exacta entonces 0F(A)F(B)F(C) es una sucesión exacta.
  • F es un funtor exacto derecho si ABC0 es una sucesión exacta entonces F(A)F(B)F(C)0 es una sucesión exacta.

Ejemplos

  • El ejemplo más importante de funtor exacto izquierdo es el funtor Hom. Si A es una categoría abeliana y A es un objeto de A entonces FA(X) = HomA(A,X) es un funtor de A en Ab (la categoría de grupos abelianos este funtor es un funtor exacto izquierdo F es exacto si y solo si A es proyectivo. El funtor GA(X) = HomA(X,A) es un funtor de Aop en Ab también es un funtor exacto izquierdo y es exacto si y solo si A es inyectivo.
  • Si K es un cuerpo y V es un espacio vectorial sobre K sea V* = Homk(V,k), con lo que obtenemos un funtor exacto de la categoría de K-Vec (la categoría de espacios vectoriales en sí misma. (la exactitud se debe a que K es un espacio vectorial inyectivo). De forma alterna uno puede argumentar que toda sucesión exacta corta de K-espacios vectoriales se factoriza y que cualquier funtor aditivo envía sucesiones factorizadas en sucesiones factorizadas).
  • Si X es una espacio topológico, podemos considerar la categoría de gavillas de grupos abelianos en X. El funtor que asocia a cada gavilla G el grupo de secciones globales G(X) es exacto izquierdo.

Si A y B son dos categorías abelianas, podemos considerar la categoría de funtores BA cuyos objetos son funtores de A en B y los morfismos entre dos objetos son transformaciones naturales entonces tenemos un funtor EA de BA a B evaluando funtores en A. Este funtor 'EA es exacto.

Algunos hechos

Un funtor (no necesariamente aditivo) es exacto izquierdo si y solo si lleva límites finitos en límites. Análogamente un funtor (no necesariamente aditivo) es exacto derecho si y solo si lleva colimites finitos en colimites.

El grado con el cual un funtor exacto izquierdo falla de ser exacto puede ser medido con sus funtores derivados derechos y el grado con el cual un funtor exacto derecho falla de ser exacto puede ser medido con sus funtores derivados izquierdos.

Existe un teorema que nos asegura que si F y G son funtores y F es adjunto izquierdo de G entonces F es exacto derecho y G es exacto izquierdo.


Referencias

Esta página se editó por última vez el 13 ene 2022 a las 10:15.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.