To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Estabilidad de Liapunov

De Wikipedia, la enciclopedia libre

En matemáticas, la noción de estabilidad de Liapunov se da en el estudio de los sistemas dinámicos.

De manera esquemática, diremos que un punto de equilibrio de la ecuación diferencial homogénea es estable si todas las soluciones a la ecuación que parten en un entorno de se mantienen cerca de para todo tiempo posterior.

Esta definición de estabilidad lleva el nombre de Aleksandr Liapunov, quien publicó en 1892 su tesis de doctorado El problema general de la estabilidad del movimiento, donde define este concepto.

YouTube Encyclopedic

  • 1/5
    Views:
    13 330
    30 158
    8 344
    509
    1 470
  • Estabilidad de un sistema LTI
  • Mod-01 Lec-07 Lyapunov theorem on stability
  • Diagrama de fases de un sistema diferencial autónomo plano
  • Estabilidad en sistemas de tiempo discreto
  • Ecuaciones Diferenciales. Sistemas autónomos planos. Ejemplo de clasificación de puntos críticos.

Transcription

Definición

Sea un campo de vectores en una variedad diferenciable . Consideremos la ecuación diferencial

,

tal que (es decir, un punto de equilibrio de la ecuación). Diremos que es:

  1. estable en el sentido de Liapunov si para todo , existe tal que si es solución de la ecuación con , entonces para tenemos .
  2. asintóticamente estable si cumple con el punto anterior y además el puede elegirse de manera que .

Ejemplos

(1) Sea la ecuación diferencial en . El 0 es un punto de equilibrio de la ecuación. Veamos que es asintóticamente estable.

Si entonces la solución de la ecuación con condición es . Es fácil ver que para todo tendremos que esa solución es decreciente y tiende a 0 cuando .

Por lo tanto, dado , tomando se cumple: si entonces para y .


(2) Para la ecuación el 0 también es un punto de equilibrio. Veamos que no es estable.

Si entonces la solución a la ecuación con condición es .

Tomando tenemos que ningún sirve para la definición de estabilidad: dado la solución verifica , pero existe tal que .


(3) Sea la ecuación , donde . Veamos que el origen es un punto de equilibrio estable pero no asintóticamente estable.

Para ello mostremos que si es solución a la ecuación entonces es constante: . Por lo tanto, toda solución que parte a distancia del origen se mantendrá a distancia siempre. Esto implica que el origen es estable pero no asintóticamente.

El caso lineal

Para el caso de ecuaciones en del tipo , donde , se conoce una clasificación completa de los casos en que el origen es un punto de equilibrio estable o asintóticamente estable, estudiando sus valores propios.

Si tiene todos sus valores propios con parte real negativa entonces el origen es un punto de equilibrio asintóticamente estable. Si la matriz tiene algún valor propio con parte real positiva entonces el origen no es estable.

Para el caso en que tenga valores propios con parte real nula se sabe que el origen no es asintóticamente estable. Para ver si es estable debemos estudiar las multiplicidades geométricas de dichos valores propios. Cuando la matriz tiene valores propios con parte real menor o igual a cero tendremos que: el origen es estable si y solo para todo valor propio con parte real 0 se tiene que la multiplicidad algebraica de es igual a la geométrica.

Algunos resultados

El teorema de Hartman-Grobman

Sea una función diferenciable. El teorema de Hartman-Grobman indica que para estudiar la estabilidad de un punto de equilibrio de la ecuación puede utilizarse su aproximación lineal en algunos casos. Más en concreto: sea tal que y su matriz jacobiana no tiene valores propios con parte real nula, entonces es (asintóticamente) estable si y solo si el origen es (asintóticamente) estable para la ecuación .

Funciones de Liapunov

Sea una función de clase . Consideremos la ecuación . Supongamos verifica .

Sea un entorno de , derivable tal que , . A una función así la llamaremos función de Liapunov. Para solución a la ecuación diferencial, la derivada de es .

Existen dos resultados debidos a Liapunov que conciernen este tipo de funciones:

  1. si entonces p es estable;
  2. si entonces es asintóticamente estable.

Véase también

Bibliografía

  • Sotomayor, Jorge (1979). Lições de Equações Diferenciais Ordinárias (en portugués). Río de Janeiro: IMPA (Projeto Euclides). 
  • Gil, Omar (2002). «Ecuaciones diferenciales ordinarias: teoría básica». Curso introductorio a las ecuaciones diferenciales. Montevideo: IMERL (Facultad de Ingeniería, Universidad de la República). pp. 245-272. 
  • Imaz, Carlos; Vorel, Zdenek (1968). «El problema de estabilidad». Ecuaciones diferenciales ordinarias (primera edición). México D.F.: Limusa-Wiley S.A. pp. 123-156. 
  • Lyapunov, Aleksandr (1992). The general problem of stability of motion (en inglés) (primera edición). Londres: Taylor & Francis. 
Esta página se editó por última vez el 11 oct 2023 a las 17:39.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.