To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Espacio cociente

De Wikipedia, la enciclopedia libre

Espacio cociente es un término matemático que hace referencia a cierta estructura matemática que se deriva de otra en la que se ha definido una relación de equivalencia.

De manera más precisa, si X es una estructura matemática en el que se define una relación de equivalencia ~, entonces el espacio cociente X/~ es la estructura matemática inducida en el conjunto de clases de equivalencia con las operaciones entre clases de equivalencia obtenidas de manera canónica a partir de las correspondientes en X.

Un caso muy común se refiere al caso en que Y sea una subestructura de X (por ejemplo, subespacio vectorial, subgrupo, subespacio topológico, etc.) en cuyo caso el espacio cociente de la relación de equivalencia asociada se suele denotar como X/Y.

Ejemplos notables

Conjunto cociente

Si A es un conjunto y ~ una relación de equivalencia, entonces las clases de equivalencia forman una partición del conjunto A.

Las clases de equivalencia de la relación integran entre sí un nuevo conjunto, denominado conjunto cociente y denotado A/~.

Ejemplo
Consideremos el conjunto A de personas en una oficina. La relación
cuando tiene el mismo primer apellido que
es una relación de equivalencia en A e induce una partición de las personas de la oficina en grupos separados dependiendo de su primer apellido.
Entonces el conjunto de primeros apellidos de personas de la oficina es el conjunto cociente de las personas de la oficina entre la relación de equivalencia.
Si, por ejemplo, en la oficina se encuentran las personas
{Juan Pérez, Luis García, Carlos Pérez, Manuel González, Luis Martínez, Arturo García}
entonces las clases de equivalencia son
  • [Pérez] = {Juan Pérez, Carlos Pérez}
  • [García] = {Luis García, Arturo García}
  • [González] = {Manuel González}
  • [Martínez] = {Luis Martínez}
Y el conjunto cociente de dicha relación de equivalencia es
Ejemplo.
Si en el conjunto de los números enteros se define la relación cuando sea un múltiplo de 5, entonces las clases de equivalencia son:
  • .
y por tanto el conjunto cociente tiene cinco elementos:
  • .
Ejemplo.

Partiendo de que el par ordenado (a,b) es elemento de ℤ×ℤ* con b≠0. Se define (a,b)~ (c,d) si y solo si ad = bc. Esta relación es de equivalencia en ℤ×ℤ*. Por ejemplo {(x,y)~(2,5) }= {(2,5) (4,10) (6,15) (8,20) (10,25)... }:= [2,5], que es su elemento canónico.

El conjunto cociente ℤ×ℤ*/~ es el conjunto ℚ de los números racionales.[1]

Grupo cociente

Si G es un grupo y H es un subgrupo de G, entonces la relación es una relación de equivalencia cuyas clases de equivalencias son las clases laterales (izquierdas) del subgrupo H.

En este caso, el conjunto cociente se denota G/H y es posible inducir una estructura de grupo en G/H de manera canónica a partir de la operación en G:

  • Si aH y bH son dos clases de equivalencia, se define el producto (aH)(bH) como la operación cuyo resultado es la clase lateral (ab)H.

Con esta operación, G/H adquiere estructura de grupo, el cual se denomina grupo cociente.

Construcciones similares se pueden realizar para anillos, módulos y otras estructuras algebraicas.

Espacio vectorial cociente

En álgebra lineal, el espacio vectorial cociente E/F de un espacio vectorial E por un subespacio vectorial F, es la estructura natural de espacio vectorial sobre el conjunto cociente de E por la relación de equivalencia: v está relacionado con w si y solo si v-w pertenece a F.

Espacio topológico cociente

Si X es un espacio topológico y es una función suprayectiva, entonces es posible inducir una topología T en Y a partir de la topología de X:

  • A es un conjunto abierto en la topología de Y si es un conjunto abierto de X.

La topología de Y se denomina topología cociente inducida por p.

Ahora, considérese una partición de en clases disjuntas (es decir, considérese una relación de equivalencia). La función que asigna cada punto de a la clase de equivalencia que lo contiene es una función suprayectica.

El espacio con la topología cociente inducida por p se denomina espacio cociente de X (inducido por la relación de equivalencia).

Informalmente, esta construcción corresponde a la identificación de todos los puntos de la clase de equivalencia en un mismo punto, por lo que al espacio cociente también se le conoce como espacio de identificación o espacio de descomposición de X.

Referencias y citas

  1. Frank Ayres. «Álgebra Moderna», libros Mc Graw-Hill, Bogotá, Colombia

Véase también

Enlaces externos

Esta página se editó por última vez el 7 oct 2019 a las 19:32.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.