To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Dominio de definición

De Wikipedia, la enciclopedia libre

Ilustración que muestra f, una función de dominio X  a codominio Y. El óvalo pequeño dentro de Y es la imagen de f, a veces llamado rango de f.
Ilustración que muestra f, una función de dominio X a codominio Y. El óvalo pequeño dentro de Y es la imagen de f, a veces llamado rango de f.

En matemáticas, el dominio (conjunto de definición o conjunto de partida) de una función es el conjunto de existencia de ella misma, es decir, los valores para los cuales la función está definida. Es el conjunto de todos los objetos que puede transformar, se denota o bien . En se denomina dominio a un conjunto conexo, abierto y cuyo interior no sea vacío.

Por otra parte, el conjunto de todos los resultados posibles de una función dada se denomina codominio de esa función.

Definición

El dominio de definición de una función f: XY se define como el conjunto X de todos los elementos x para los cuales la función f asocia algún y perteneciente al conjunto Y de llegada, llamado codominio. Esto, escrito de manera formal: es una fusión de todos los valores

Propiedades

Dadas dos funciones reales:

Se tienen las siguientes propiedades:

Cálculo del dominio de una función

Para el cálculo certero del dominio de una función, se debe introducir el concepto de restricción en el cuerpo real. Estas restricciones ayudarán a identificar la existencia del dominio de una función. Las más usadas son:

Logaritmo de una función

Los logaritmos no están definidos para números negativos ni para el cero, por tanto toda función contenida dentro de un logaritmo debe ser necesariamente mayor estricto de cero. Por ejemplo:

Por la propiedad anteriormente citada, se observa que para que esta función esté bien definida, necesariamente ; despejando, se obtienen dos soluciones y . La unión de ambas soluciones representa el dominio de la función, que está definida como el conjunto (-∞, -3) U (3, +∞).

Fracciones

Otras propiedades de las matemáticas pueden ayudar a obtener el dominio de una función y excluir puntos donde esta no esté definida. Por ejemplo, una función que tenga forma de fracción no estará definida cuando el denominador valga cero.

Ejemplos

Algunos dominios de funciones reales de variable real:

El dominio de esta función, así como el de cualquier función polinómica y exponencial, es .
El dominio de esta función es puesto que la función no está definida para x = 0.
El dominio de esta función es ya que los logaritmos están definidos sólo para números positivos.
El dominio de esta función es porque la raíz de un número negativo no existe en el cuerpo de los reales.

Véase también

Enlaces externos

Esta página se editó por última vez el 13 may 2021 a las 12:29.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.