To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Desigualdad matemática

De Wikipedia, la enciclopedia libre

En matemáticas, una desigualdad es una relación de orden que se da entre dos valores cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad).

Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados.

Estas relaciones se conocen como desigualdades estrictas, puesto que a no puede ser igual a b; también puede leerse como "estrictamente menor que" o "estrictamente mayor que"

  • La notación ab significa a es menor o igual que b;
  • La notación ab significa a es mayor o igual que b;

este tipo de desigualdades reciben el nombre de desigualdades amplias (o no estrictas).

  • La notación a b significa a es mucho menor que b;
  • La notación a b significa a es mucho mayor que b; esta relación indica por lo general una diferencia de varios órdenes de magnitud.
  • La notación ab significa que a no es igual a b. Tal expresión no indica si uno es mayor que el otro, o siquiera si son comparables.

Generalmente se tienden a confundir los operadores según la posición de los elementos que se están comparando; didácticamente se enseña que la abertura está del lado del elemento mayor. Otra forma de recordar el significado, es recordando que el signo señala/apunta al elemento menor.

Propiedades

Las desigualdades están gobernadas por las siguientes propiedades. Notar que, para las propiedades transitividad, adición, sustracción, multiplicación y división, la propiedad también se mantiene si los símbolos de desigualdad estricta (< y >) son reemplazados por sus correspondientes símbolos de desigualdad no estricta (≤ y ≥).

Transitividad

  • Si a > b y b > c entonces a > c.
  • Si a < b y b < c entonces a < c.
  • Si a > b y b = c entonces a > c.
  • Si a < b y b = c entonces a < c.

Adición y sustracción

  • Si a < b entonces a + c < b + c y a − c < b − c.
  • Si a > b entonces a + c > b + c y a − c > b − c.

Multiplicación y división

  • Para números reales arbitrarios a y b, y c diferente de cero:
  • Si c es positivo y a < b entonces ac < bc y a/c < b/c.
  • Si c es negativo y a < b entonces ac > bc y a/c > b/c.

Opuesto

  • Para números reales arbitrarios a y b:
  • Si a < b entonces −a > −b.
  • Si a > b entonces −a < −b.

Recíproco

  • Para números reales a y b distintos de cero, ambos positivos o negativos a la vez:
  • Si a < b entonces 1/a > 1/b.
  • Si a > b entonces 1/a < 1/b.
  • Si a y b son de distinto signo:
  • Si a < b entonces 1/a < 1/b.
  • Si a > b entonces 1/a > 1/b.

Función monótona

Al aplicar una función monótona creciente, a ambos lados, la desigualdad se mantiene. Si se aplica una función monótona decreciente, la desigualdad se invierte.

Ejemplo

al aplicar la función exponencial a ambos miembros de la desigualdad, esta se mantiene.

Valor absoluto

Se puede definir el valor absoluto por medio de desigualdades:

Cuerpo ordenado

Si (F, +, ×) es un cuerpo y ≤ es un orden total sobre F, entonces (F, +, ×, ≤) es un cuerpo ordenado si y solo si:

  • ab implica a + cb + c;
  • 0 ≤ a y 0 ≤ b implica 0 ≤ a × b.

Los cuerpos (Q, +, ×, ≤) y (R, +, ×, ≤) son ejemplos comunes de cuerpo ordenado, pero ≤ no puede definirse en los complejos para hacer de (C, +, ×, ≤) un cuerpo ordenado.

Las desigualdades en sentido amplio ≤ y ≥ sobre los números reales son relaciones de orden total, mientras que las desigualdades estrictas < y > sobre los números reales son relaciones de orden estricto.

Notación encadenada

La notación a < b < c establece que a < b (a menor que b) y que b < c (b menor que c) y aplicando la propiedad transitiva anteriormente citada, puede deducirse que a < c (a menor que c). Obviamente, aplicando las leyes anteriores, puede sumarse o restarse el mismo número real a los tres términos, así como multiplicarlos o dividirlos todos por el mismo número (distinto de cero) invirtiendo las inecuaciones según su signo. Así, a < b + e < c es equivalente a a - e < b < c - e.

Esta notación se puede extender a cualquier número de términos: por ejemplo, a1 ≤ a2 ≤ ... ≤ an establece que ai ≤ ai+1 para i = 1, 2, ..., n−1. Según la propiedad transitiva, esta condición es equivalente a ai ≤ aj para cualesquiera 1 ≤ i ≤ j ≤ n.

Ocasionalmente, la notación encadenada se usa con inecuaciones en diferentes direcciones. En ese caso el significado es la conjunción lógica de las desigualdades entre los términos adyacentes. Por ejemplo:

a < b = c ≤ d

significa que a < b, b = c, y c ≤ d (y por transitividad: a < d). Esta notación es utilizada en algunos lenguajes de programación tales como Python.

Desigualdades entre medias

Las distintas medias pueden relacionarse utilizando desigualdades. Por ejemplo, para números positivos a1, a2, …, an, si

(Media armónica),
(Media geométrica),
(Media aritmética),
(Media cuadrática),

entonces: .

Véase también

Bibliografía

Enlaces externos

Esta página se editó por última vez el 29 oct 2021 a las 05:28.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.