To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Desigualdad de Poincaré

De Wikipedia, la enciclopedia libre

En matemáticas, la desigualdad de Poincaré es un resultado en la teoría de los espacios de Sóbolev, que lleva el nombre del matemático francés Henri Poincaré. La desigualdad permite obtener límites en una función mediante límites en sus derivadas y la geometría de su dominio de definición. Tales límites son de gran importancia en los modernos métodos directos del cálculo de variaciones. Un resultado muy estrechamente relacionado es la desigualdad de Friedrichs.

YouTube Encyclopedic

  • 1/3
    Views:
    966
    14 213
    438
  • Schwarz, Poincare and Friedrichs inequalities
  • Álgebra ( Desigualdades I ) - Nível 3
  • Para qué hacerlo fácil si se puede hacer difícil - Fisquito #3x03

Transcription

Enunciación de la desigualdad

La desigualdad de Poincaré clásica

Sea p, tal que 1≤p<∞ y Ω un subconjunto con al menos un borde. Entonces existe una constante C, dependiendo sólo de Ω y p , tal que para cada función u del Espacio de Sóbolev W01,p(Ω) se tiene:

La desigualdad de Poincaré-Wirtinger

Asumiendo que 1 ≤ p ≤ ∞ y que Ω es a subconjunto abierto acotado y conexo del espacio euclídeo n-dimensional Rn con un dominio de Lipschitz. Entonces existe una constante C, dependiente solo de Ω y p, tal que para función u en el espacio de Sóbolev W1,p(Ω) se tiene:

donde

es el valor medio de u sobre Ω, con |Ω| representando la medida de Lebesgue del dominio Ω. Cuando Ω es una bola, la desigualdad superior es llamada una (p,p)-desigualdad de Poincaré; para dominios más generales Ω, se conoce como desigualdad de Sóbolev.

Generalizaciones

En el contexto de espacios métricos, estos espacios soportanuna (q,p)-desigualdad de Poincaré para si hay constantes C y de modo que para cada bola B en tal espacio se tiene lo siguiente:

En el contexto de espacios métricos, es el mínimo p-débil gradiente superior de u en el sentido de Heinonen y Koskela [J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61]

Existen otras generalizaciones de la desigualdad de Poincaré en otros espacios de Sóbolev. Por ejemplo, el siguiente (Garroni y Müller (2005)) es una desigualdad de Poincaré para el espacio de Sóbolev H1/2(T2), es decir, el espacio de funciones u en el espacio L2 del toro T2 con la transformada de Fourier û satisfaciendo:

existe una constante C tal que para cada u ∈ H1/2(T2) con u identicamente cero en un abierto E ⊆ T2 se tiene:

donde cap(E × {0}) denota la capacidad armónica de E × {0} cuando se ve como un subconjunto de R3.

La constante de Poincaré

La constante óptima C en la desigualdad de Poincaré es algunas veces conocida como la constante de Poincaré para el dominio Ω. Determinar la constante de Poincaré es, en general, una tarea muy difícil que depende tanto de p como de la gemometría del dominio Ω. Aunque en algunos casos es tratable.

Véase también

Referencias

  • Acosta, Gabriel; Durán, Ricardo G. (2004), «An optimal Poincaré inequality in L1 for convex domains», Proc. Amer. Math. Soc. 132 (1): 195-202 (electronic), doi:10.1090/S0002-9939-03-07004-7 .
  • Acosta, Gabriel; Durán, Ricardo G. (2004), «An optimal Poincaré inequality in L1 for convex domains», Proc. Amer. Math. Soc. 132 (1): 195-202 (electronic), doi:10.1090/S0002-9939-03-07004-7 .
  • Acosta, Gabriel; Durán, Ricardo G. (2004), «An optimal Poincaré inequality in L1 for convex domains», Proc. Amer. Math. Soc. 132 (1): 195-202 (electronic), doi:10.1090/S0002-9939-03-07004-7 . Acosta, Gabriel; Durán, Ricardo G. (2004), «An optimal Poincaré inequality in L1 for convex domains», Proc. Amer. Math. Soc. 132 (1): 195-202 (electronic), doi:10.1090/S0002-9939-03-07004-7 .
  • Acosta, Gabriel; Durán, Ricardo G. (2004), «An optimal Poincaré inequality in L1 for convex domains», Proc. Amer. Math. Soc. 132 (1): 195-202 (electronic), doi:10.1090/S0002-9939-03-07004-7 . Acosta, Gabriel; Durán, Ricardo G. (2004), «An optimal Poincaré inequality in L1 for convex domains», Proc. Amer. Math. Soc. 132 (1): 195-202 (electronic), doi:10.1090/S0002-9939-03-07004-7 .
  • Acosta, Gabriel; Durán, Ricardo G. (2004), «An optimal Poincaré inequality in L1 for convex domains», Proc. Amer. Math. Soc. 132 (1): 195-202 (electronic), doi:10.1090/S0002-9939-03-07004-7 .
  • Acosta, Gabriel; Durán, Ricardo G. (2004), «An optimal Poincaré inequality in L1 for convex domains», Proc. Amer. Math. Soc. 132 (1): 195-202 (electronic), doi:10.1090/S0002-9939-03-07004-7 .
Esta página se editó por última vez el 8 abr 2024 a las 16:51.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.