To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Constante de los gases ideales

De Wikipedia, la enciclopedia libre

La constante universal de los gases ideales [1][2]​ es una constante física que relaciona entre sí diversas variables de estado gaseoso, estableciendo esencialmente una relación entre el volumen, la presión, la temperatura y la cantidad de materia.

Introducción

En su forma más particular la constante se emplea en la relación de la cantidad de materia en un gas ideal, medida en número de moles (n), con la presión (P), el volumen (V) y la temperatura (T), a través de la ecuación de estado de los gases ideales[3][4][5][6][7]

El modelo del gas ideal asume que el volumen de la molécula es cero y las partículas no interactúan entre sí. La mayor parte de los gases reales se acercan a esta constante dentro de dos cifras significativas, en condiciones de presión y temperatura suficientemente alejadas del punto de licuefacción o sublimación. Las ecuaciones de estado de gases reales son, en muchos casos, correcciones de la anterior.

Valor de R

La constante universal de los gases ideales no es una constante fundamental (por eso, escogiendo adecuadamente la escala de temperaturas y usando el número de partículas, puede tenerse R = 1, aunque este sistema de unidades no es muy práctico). Considerando sistemas de unidades usuales más prácticos, el valor de R en distintas unidades es:

Unidad Observación
8,314472 kJ / (K kmol)
8,314472 J / (K mol)
0,08205746 L atm / (K mol)
8,205746 x 10-5 m3 atm / (K mol)
8,314472 dm3 kPa / (K mol)
8,314472 L kPa / (K mol)
8,314472 m3 Pa / (K mol)
62,36367 L mmHg / (K mol)
62,36365 L Torr / (K mol)
83,14472 L mbar / (K mol)
1,987 cal / (K mol)
6,132440 lbf ft / (K g-mol)
10,73159 ft3 psi / (°R lb-mol)
0,7302413 ft3 atm / (°R lb-mol)
2,2024 ft3 mmHg / (K mol)
8,314472 x 107 erg / (K mol)
1716 ft lb / (°R slug) Solo aire, sin vapor de agua
286,9 N m / (kg K) Solo aire, sin vapor de agua
286,9 J / (kg K) Solo aire, sin vapor de agua
0,08205746 dm3 atm / (K mol)
8,314472 x 10-5 m3 bar / (K mol)

Relevancia

Si bien la constante se introdujo originalmente en el contexto de los gases, y de ahí su nombre, la constante R aparece en muchos otros contextos que no tienen nada que ver con los gases. Eso se debe a que realmente la constante R está relacionada con la constante de Boltzmann, que es un factor que relaciona en muchos sistemas unidades de energía con unidades de temperatura. Así, cuando la relación se establece con la cantidad de materia entendida como número de partículas, se transforma la constante R en la constante de Boltzmann, que es igual al cociente entre R y el número de Avogadro:

Además de en la ecuación de estado de los gases ideales, la constante universal R (o en forma de constante de Boltzmann) aparece en muchas expresiones físico-químicas importantes, como la ecuación de Nernst, la de Clausius-Mossotti (conocida también como de Lorentz-Lorentz), la de Arrhenius, la de Van't Hoff, la ley de Dulong-Petit, así como en termodinámica estadística.

Véase también

Referencias

  1. Virto Albert, Luís (2017). «1.1». Dinámica de gases. Universitat Politècnica de Catalunya. p. 13. ISBN 978-84-9880-692-2. 
  2. Movilla Rosell, José Luis; Movilla, José Luis (2005). «7». Termodinámica química. Publicacions de la Universitat Jaume I. p. 164. ISBN 84-8021-524-0. 
  3. .id=BRYwZ0DXj0MC&pg=PT81&dq=P+V+%3D+n+R+T&hl=es&sa=X&ved=0CFIQ6AEwB2oVChMIyOOsvamNxwIVAzgUCh1d0AO4#v=onepage&q=P%20V%20%3D%20n%20R%20T&f=false Química inórganica en Google libros
  4. Peter William Atkins; Loretta Jones (2006). «4.8». Principios de química (5 edición). Ed. Médica Panamericana. p. 135. ISBN 978-95-0060-282-2. 
  5. Biel Gayé, Jesús (1997). «14.1». Curso Sobre el Formalismo y Los Métodos de la Termodinámica 1 (1 edición). Editorial Reverte. p. 252. ISBN 978-84-291-4343-0. 
  6. Joseph W. Kane; Morton M. Sternheim (1989). «10.4». Física (José Casas Vázquez; David Jou Mirabent, trad.) (2 edición). Editorial Reverte. p. 229. ISBN 978-84-291-4318-8. 
  7. Charles Kittel (1972). «11». Física térmica. Editorial Reverte. p. 187. ISBN 978-84-291-4076-7. 

Bibliografía

  • Peter J. Mohr, and Barry N. Taylor, "CODATA recommended values of the fundamental physical constants: 1998", Rev. Mod. Phys., Vol 72, No. 2, April 2000
  • Levine, I.N. “Physical Chemistry ” (4ª ed.), McGraw-Hill, New York, 1996. “Fisicoquímica” (trad. A. González Ureña, versión de la 4ª ed.), McGraw-Hill/Interamericana, Madrid, 1999.

Enlaces externos

Esta página se editó por última vez el 31 mar 2021 a las 09:50.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.