To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Conjetura de Artin sobre raíces primitivas

De Wikipedia, la enciclopedia libre

En teoría de números, la conjetura de Artin sobre raíces primitivas expresa que dado un número entero a que no es un cuadrado perfecto y tampoco −1, es una raíz primitiva módulo de infinitos primos p. La conjetura también describe una densidad asintótica de esos primos. Esta densidad conjetural es igual a la constante de Artin o a un múltiplo racional de la misma.

La conjetura fue formulada por Emil Artin a Helmut Hasse el 27 de septiembre de 1927, según el diario de este último. A pesar de los importantes progresos realizados, la conjetura sigue sin estar resuelta. De hecho, todavía no existe ni un solo valor de a para el que la conjetura de Artin haya sido demostrada.

YouTube Encyclopedic

  • 1/1
    Views:
    18 161
  • EL MIEDO A LA LIBERTAD - ERICK FROMM - AUDIOLIBRO

Transcription

Formulación

Sea a un entero que no es un cuadrado perfecto y tampoco −1. Escríbase a = a0b2 con a0 libre de cuadrados. Denote por S(a) el conjunto de números primos p tales que a sea una raíz primitiva módulo p. Entonces

  1. S(a) tiene una densidad asintótica positiva dentro del conjunto de primos. En particular, S(a) es infinita.
  2. Bajo las condiciones de que a no sea una potencia perfecta y de que a0 no sea congruente con 1 módulo 4, esta densidad es independiente de a y es igual a la constante de Artin que puede ser expresada como un producto infinito
    (sucesión A005596 en OEIS).

Fórmulas de productos similares conjeturadas [1]​ existen para la densidad cuando a no satisface las condiciones anteriores. En esos casos, la densidad conjeturada es siempre un múltiplo racional de CArtin.

Ejemplo

Por ejemplo, tómese a = 2. La conjetura afirma que el conjunto de los números primos p para los cuales 2 es una raíz primitiva tiene la densidad anteriormente citada CArtin. El conjunto de tales primos es (sucesión A001122 en OEIS)

S(2) = {3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491,...}.

Este tiene 38 elementos más pequeños que 500 y hay 95 primos menores que 500. El radio (que tiende conjeturizadamente a CArtin) es 38/95 = 2/5 = 0.4.

Intentos de demostración

En 1967, Hooley publicó una prueba condicional para la conjetura, asumiendo ciertos casos de la hipótesis generalizada de Riemann.[2]​ En 1984, R. Gupta y M. Ram Murty mostraron incondicionalmente que la conjetura de Artin es cierta para infinitos a usando métodos de cribado.[3]​ Roger Heath-Brown mejoró sus resultados y mostró incondicionalmente que hay, como mucho, dos números primos excepcionales a para los cuales la conjetura de Artin falla.[4]​ Este resultado no es constructivo, en lo que se refiere a las excepciones. Por ejemplo, se sigue del teorema de Heath-Brown que uno de los primos 3, 5 o 7 es una raíz primitiva módulo p para infinitos p. Pero la demostración no proporciona una forma de calcular cual de ellos es.

Véase también

  • Conjetura de Brown–Zassenhaus
  • Número cíclico (teoría de grupos)

Referencias

  1. Gerard P. Michon (15 de junio de 2006). «Artin's Constant». Numericana. 
  2. Hooley, Christopher (1967). «On Artin's conjecture». J. Reine Angew. Math. 225: 209-220. 
  3. Gupta, Rajiv; Murty, M. Ram (1984). «A remark on Artin's conjecture». Invent. Math. 78 (1): 127-130. doi:10.1007/BF01388719. 
  4. Heath-Brown, D. R. (1986). «Artin's conjecture for primitive roots». Quart. J. Math. Oxford Ser. 37 (1): 27-38. doi:10.1093/qmath/37.1.27. 

Enlaces externos


Esta página se editó por última vez el 20 abr 2022 a las 17:39.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.