To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Circunferencia de Spieker

De Wikipedia, la enciclopedia libre

Triángulo ABC, su triángulo medial, el círculo de Spieker (el círculo del triángulo medial) y el centro de Spieker X10 (el centro del círculo de Spieker)

En geometría, el incírculo del triángulo medial de un triángulo es la circunferencia de Spieker, nombrada así por el geómetra alemán Theodor Spieker. Su centro, el punto de Spieker, es el incentro del triángulo medial. El centro de Spieker es también el punto donde los bisectores del perímetro del triángulo que terminan el punto medio de cada lado se intersecan. 

El punto de Nagel y el punto mediano de un triángulo son los centros homotéticos de la Circunferencia de Spieker y de la circunferencia inscrita en el triángulo. 

Construcción

Para encontrar la circunferencia de Spieker de un triángulo, primero se debe construir el triángulo medial a partir de los puntos medios de cada lado del triángulo original.[1]​ Luego, la circunferencia se construye de tal manera que cada lado del triángulo medial sea tangente a la circunferencia dentro del triángulo medial, creando la circunferencia.[1]​ Este centro circular se llama punto de Spieker.

Referencias

  1. a b de Villiers, Michael (June 2006). «A generalisation of the Spieker circle and Nagel line». Pythagoras 63: 30-37. 

Bibliografía

  • Johnson, Roger A. (1929). Modern Geometry. Boston: Houghton Mifflin.  Dover reprint, 1960.
  • Kimberling, Clark (1998). «Triangle centers and central triangles». Congressus Numerantium 129: i-xxv, 1-295. 
Esta página se editó por última vez el 28 nov 2020 a las 11:29.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.