To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Arcotangente de dos parámetros

De Wikipedia, la enciclopedia libre

La función  atan2 (y, x) devuelve el ángulo θ entre la recta que une el origen de coordenadas con un punto (x, y) y el eje positivo x, limitado a -π, π
La función atan2 (y, x) devuelve el ángulo θ entre la recta que une el origen de coordenadas con un punto (x, y) y el eje positivo x, limitado a -π, π
Gráfico de  atan2 ⁡ ( y , x ) {\displaystyle \operatorname {atan2} (y,x)}  sobre  y / x {\displaystyle y/x}
Gráfico de sobre

La función arcotangente de dos parámetros (representada con la notación o también ; el nombre procede de que el cálculo de la arcotangente se hace a partir de dos argumentos) devuelve el ángulo formado entre el eje x positivo y la recta que conecta el origen con un punto de coordenadas (x, y) ≠ (0,0) del plano euclidiano, expresado en radianes.

De manera equivalente, es el argumento (también llamado "fase" o "ángulo") del número complejo .

Historia

La función apareció por primera vez en el lenguaje de programación FORTRAN (en la implementación de IBM FORTRAN-IV en 1961), y habitualmente se define de la manera descrita.[1]​ La incorporación como función del sistema de este comando permite evitar la programación de una subrutina que a partir de los datos de y de corrija en π radianes el valor devuelto por la función atan (y/x)

Utilización

Se utiliza fundamentalmente para devolver un valor correcto e inequívoco para el ángulo θ en la conversión de coordenadas cartesianas (x, y) a coordenadas polares (r, θ).

La función devuelve un único valor θ, tal que -π<θπ, siempre que r>0:

r > 0,

Está claro que siempre se cumple que , pero se observa que solo se obtiene el resultado deseado con la función

cuando x>0. Cuando x<0, el ángulo aparente de la expresión anterior apunta en la dirección opuesta al ángulo correcto y se debe sumar (o indistintamente restar) un valor de pi (o 180°) a θ para colocar el punto cartesiano (x, y) en el cuadrante correcto del plano euclidiano.[2]​ Esto requiere el conocimiento de los signos de x y de y por separado, información que se pierde cuando y se divide por x.

Véase también

Referencias

Esta página se editó por última vez el 24 ene 2021 a las 12:18.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.