To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

# Archivo:Venn1010.svg

## Resumen

One of 16 Venn diagrams, representing 2-ary Boolean functions like set operations and [[w:Logical corect 81 233 166 409 ¬A or ¬B rect 260 231 349 409 A or ¬B rect 393 230 481 409 ¬A or B rect 574 232 663 408 A or B rect 13 436 103 617 ¬B rect 147 438 235 617 ¬A rect 279 440 368 616 A xor B rect 375 440 464 617 A xnor B rect 507 439 595 617 A rect 639 438 732 617 B rect 79 647 168 826 ¬A and ¬B rect 260 647 349 826 A and ¬B rect 392 646 482 826 ¬A and B rect 574 646 663 826 A and B rect 327 853 417 1035 X and ¬X desc top-right </imagemap>

## Operations and relations in set theory and logic

 ∅c A = A Ac ${\displaystyle \scriptstyle \cup }$ Bc trueA ↔ A A ${\displaystyle \scriptstyle \cup }$ B A ${\displaystyle \scriptstyle \subseteq }$ Bc A${\displaystyle \scriptstyle \Leftrightarrow }$A A ${\displaystyle \scriptstyle \supseteq }$ Bc A ${\displaystyle \scriptstyle \cup }$ Bc ¬A ${\displaystyle \scriptstyle \lor }$ ¬BA → ¬B A ${\displaystyle \scriptstyle \Delta }$ B A ${\displaystyle \scriptstyle \lor }$ BA ← ¬B Ac ${\displaystyle \scriptstyle \cup }$ B A ${\displaystyle \scriptstyle \supseteq }$ B A${\displaystyle \scriptstyle \Rightarrow }$¬B A = Bc A${\displaystyle \scriptstyle \Leftarrow }$¬B A ${\displaystyle \scriptstyle \subseteq }$ B Bc A ${\displaystyle \scriptstyle \lor }$ ¬BA ← B A A ${\displaystyle \scriptstyle \oplus }$ BA ↔ ¬B Ac ¬A ${\displaystyle \scriptstyle \lor }$ BA → B B B = ∅ A${\displaystyle \scriptstyle \Leftarrow }$B A = ∅c A${\displaystyle \scriptstyle \Leftrightarrow }$¬B A = ∅ A${\displaystyle \scriptstyle \Rightarrow }$B B = ∅c ¬B A ${\displaystyle \scriptstyle \cap }$ Bc A (A ${\displaystyle \scriptstyle \Delta }$ B)c ¬A Ac ${\displaystyle \scriptstyle \cap }$ B B B${\displaystyle \scriptstyle \Leftrightarrow }$false A${\displaystyle \scriptstyle \Leftrightarrow }$true A = B A${\displaystyle \scriptstyle \Leftrightarrow }$false B${\displaystyle \scriptstyle \Leftrightarrow }$true A ${\displaystyle \scriptstyle \land }$ ¬B Ac ${\displaystyle \scriptstyle \cap }$ Bc A ${\displaystyle \scriptstyle \leftrightarrow }$ B A ${\displaystyle \scriptstyle \cap }$ B ¬A ${\displaystyle \scriptstyle \land }$ B A${\displaystyle \scriptstyle \Leftrightarrow }$B ¬A ${\displaystyle \scriptstyle \land }$ ¬B ∅ A ${\displaystyle \scriptstyle \land }$ B A = Ac falseA ↔ ¬A A${\displaystyle \scriptstyle \Leftrightarrow }$¬A These sets (statements) have complements (negations).They are in the opposite position within this matrix. These relations are statements, and have negations.They are shown in a separate matrix in the box below.

 Esta imagen no es elegible para estar sujeta a derecho de autor y por tanto está en el dominio público, porque consiste enteramente en información que es de propiedad común y carece de autoría original.

## derivative works

Obras derivadas de ésta:  Komplement einer Menge.svg

Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.