Resumen
One of 16 Venn diagrams, representing 2ary Boolean functions like set operations and logical connectives:
Operations and relations in set theory and logic
_{ } ∅^{c} 
_{ } A = A 

_{ } A^{c} B^{c} 
true ^{A ↔ A} 
_{ } A B 
_{ } A B^{c} 
AA ^{ } 
_{ } A B^{c} 

_{ } A B^{c} 
¬A ¬B ^{A → ¬B} 
_{ } A B 
A B ^{A ← ¬B} 
_{ } A^{c} B 
_{ } A B 
A¬B ^{ } 
_{ } A = B^{c} 
A¬B ^{ } 
_{ } A B 

_{ } B^{c} 
A ¬B ^{A ← B} 
_{ } A 
A B ^{A ↔ ¬B} 
_{ } A^{c} 
¬A B ^{A → B} 
_{ } B 
_{ } B = ∅ 
AB ^{ } 
_{ } A = ∅^{c} 
A¬B ^{ } 
_{ } A = ∅ 
AB ^{ } 
_{ } B = ∅^{c}  
¬B ^{ } 
_{ } A B^{c} 
A ^{ } 
_{ } (A B)^{c} 
¬A ^{ } 
_{ } A^{c} B 
B ^{ } 
Bfalse ^{ } 
Atrue ^{ } 
_{ } A = B 
Afalse ^{ } 
Btrue ^{ }  
A ¬B ^{ } 
_{ } A^{c} B^{c} 
A B ^{ } 
_{ } A B 
¬A B ^{ } 
AB ^{ } 

¬A ¬B ^{ } 
_{ } ∅ 
A B ^{ } 
_{ } A = A^{c} 

false ^{A ↔ ¬A} 
A¬A ^{ } 

These sets (statements) have complements (negations). They are in the opposite position within this matrix. 
These relations are statements, and have negations. They are shown in a separate matrix in the box below. 
more relations  


Esta imagen no es elegible para estar sujeta a derecho de autor y por tanto está en el dominio público, porque consiste enteramente en información que es de propiedad común y carece de autoría original. 