To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Análisis de Fourier

De Wikipedia, la enciclopedia libre

Señal temporal de un bajo de la nota musical cuerda libre A  (55 Hz).
Señal temporal de un bajo de la nota musical cuerda libre A (55 Hz).
Transformada de Fourier de la señal temporal de un bajo de la nota musical cuerda libre A (55 Hz). El análisis de Fourier revela los componentes oscilatorios de señalesy funciones.
Transformada de Fourier de la señal temporal de un bajo de la nota musical cuerda libre A (55 Hz). El análisis de Fourier revela los componentes oscilatorios de señalesy funciones.

En matemáticas, el análisis de Fourier es el estudio de la forma generales funciones pueden ser representados o aproximadas por sumas de simples funciones trigonométricas. El análisis de Fourier surgió del estudio de las series de Fourier y lleva el nombre de Joseph Fourier, quien demostró que representar una función como una suma de funciones trigonométricas simplifica enormemente el estudio de la transferencia de calor.[1]

Hoy, el tema del análisis de Fourier abarca un amplio espectro de matemáticas. En las ciencias y la ingeniería, el proceso de descomposición de una función en componentes oscilatorios a menudo se denomina análisis de Fourier, mientras que la operación de reconstrucción de la función a partir de estas piezas se conoce como síntesis de Fourier. Por ejemplo, determinar qué frecuencias componentes están presentes en una nota musical implicaría calcular la transformada de Fourier de una nota musical muestreada. Luego, se podría volver a sintetizar el mismo sonido al incluir los componentes de frecuencia como se reveló en el análisis de Fourier. En matemáticas, el término análisis de Fourier a menudo se refiere al estudio de ambas operaciones.

El proceso de descomposición en sí se llama transformación de Fourier. Su producto resultado, la transformada de Fourier, a menudo recibe un nombre más específico, que depende del dominio y otras propiedades de la función que se está transformando. Además, el concepto original del análisis de Fourier se ha extendido a lo largo del tiempo para aplicarse a situaciones cada vez más abstractas y generales, y el campo general a menudo se conoce como análisis armónico. Cada transformada utilizada para el análisis (consulte la lista de transformadas relacionadas con Fourier ) tiene una transformada inversa correspondiente que se puede utilizar para la síntesis.

Usos

El análisis de Fourier tiene muchos usos científicos - en la física, ecuaciones diferenciales parciales, teoría de números, combinatoria, procesamiento de señales, procesamiento digital de imágenes, teoría de la probabilidad, estadística, análisis forense, valoración de opciones, la criptografía, análisis numérico, acústica, oceanografía, el sonar, óptica, la difracción, geometría, análisis de estructuras de proteínas y otras áreas.

Esta amplia aplicabilidad se debe a muchas propiedades útiles de las transformadas:

  • Las transformadas son operadores lineales y, con la normalización adecuada, también son unitarias (una propiedad conocida como teorema de Parseval o, más generalmente, como el teorema de Plancherel, y más generalmente a través de la dualidad de Pontryagin). [2]
  • Las transformadas suelen ser invertibles.
  • Las funciones exponenciales son funciones propias de diferenciación, lo que significa que esta representación transforma ecuaciones diferenciales lineales con coeficientes constantes en algebraicas ordinarias.[3]​ Por lo tanto, el comportamiento de un sistema lineal invariante en el tiempo se puede analizar en cada frecuencia de forma independiente.
  • Según el teorema de convolución, las transformadas de Fourier convierten la complicada operación de convolución en una multiplicación simple, lo que significa que proporcionan una forma eficiente de calcular operaciones basadas en convolución, como la multiplicación de polinomios y la multiplicación de números grandes.[4]
  • La versión discreta de la transformada de Fourier (ver más abajo) se puede evaluar rápidamente en computadoras usando algoritmos de transformada rápida de Fourier (FFT).[5]

En medicina forense, los espectrofotómetros infrarrojos de laboratorio utilizan el análisis de transformada de Fourier para medir las longitudes de onda de la luz a las que un material absorberá en el espectro infrarrojo. El método FT se utiliza para decodificar las señales medidas y registrar los datos de longitud de onda. Y al usar una computadora, estos cálculos de Fourier se llevan a cabo rápidamente, de modo que en cuestión de segundos, un instrumento FT-IR operado por computadora puede producir un patrón de absorción de infrarrojos comparable al de un instrumento de prisma.[6]

La transformación de Fourier también es útil como representación compacta de una señal. Por ejemplo, la compresión JPEG utiliza una variante de la transformación de Fourier (transformada de coseno discreta) de pequeñas piezas cuadradas de una imagen digital. Los componentes de Fourier de cada cuadrado se redondean para reducir la precisión aritmética y los componentes débiles se eliminan por completo, de modo que los componentes restantes se pueden almacenar de forma muy compacta. En la reconstrucción de imágenes, cada cuadrado de la imagen se vuelve a ensamblar a partir de los componentes conservados aproximadamente transformados de Fourier, que luego se transforman a la inversa para producir una aproximación de la imagen original.

Uso en procesamiento de señales

Al procesar señales, como audio, ondas de radio, ondas de luz, ondas sísmicas e incluso imágenes, el análisis de Fourier puede aislar componentes de banda estrecha de una forma de onda compuesta, concentrándolos para una detección o eliminación más fácil. Una gran familia de técnicas de procesamiento de señales consiste en transformar una señal de Fourier, manipular los datos transformados de Fourier de una manera simple e invertir la transformación.[7]

Algunos ejemplos incluyen:

  • Ecualización de grabaciones de audio con una serie de filtros de paso de banda ;
  • Recepción de radio digital sin un circuito superheterodino, como en un teléfono celular moderno o un escáner de radio;
  • Procesamiento de imágenes para eliminar artefactos periódicos o anisotrópicos tales como irregularidades de video entrelazado, artefactos de bandas de fotografías aéreas de bandas o patrones de ondas de interferencias de radiofrecuencia en una cámara digital;
  • Correlación cruzada de imágenes similares para la co-alineación;
  • Cristalografía de rayos X para reconstruir una estructura cristalina a partir de su patrón de difracción;
  • Espectrometría de masas por resonancia de ciclotrón de iones por transformada de Fourier para determinar la masa de iones a partir de la frecuencia del movimiento del ciclotrón en un campo magnético;
  • Muchas otras formas de espectroscopia, incluyendo infrarrojos y de resonancia magnética nuclear espectroscopias;
  • Generación de espectrogramas de sonido utilizados para analizar sonidos;
  • Sonar pasivo utilizado para clasificar objetivos según el ruido de la maquinaria.

Referencias

  1. Elias M. Stein, Rami Shakarchi. Fourier Analysis: An Introduction (Princeton Lectures in Analysis). (2003) 328 pág. ISBN 069111384X ISBN 978-0691113845
  2. Rudin, Walter (1990). Fourier Analysis on Groups. Wiley-Interscience. ISBN 978-0-471-52364-2. 
  3. Evans, L. (1998). Partial Differential Equations. American Mathematical Society. ISBN 978-3-540-76124-2. 
  4. Knuth, Donald E. (1997). The Art of Computer Programming Volume 2: Seminumerical Algorithms (3rd edición). Addison-Wesley Professional. Section 4.3.3.C: Discrete Fourier transforms, pg.305. ISBN 978-0-201-89684-8.  Parámetro desconocido |title-link= ignorado (ayuda)
  5. Conte, S. D.; de Boor, Carl (1980). Elementary Numerical Analysis (Third edición). New York: McGraw Hill, Inc. ISBN 978-0-07-066228-5. (requiere registro). 
  6. Saferstein, Richard (2013). Criminalistics: An Introduction to Forensic Science. 
  7. Rabiner, Lawrence R.; Gold, Bernard (1975). Theory and Application of Digital Signal Processing. Englewood Cliffs, NJ. (requiere registro). 

Bibliografía

Esta página se editó por última vez el 5 ago 2021 a las 19:55.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.