To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Z-channel (information theory)

From Wikipedia, the free encyclopedia

The Z-channel sees each 0 bit of a message transmitted correctly always and each 1 bit transmitted correctly with probability 1–p, due to noise across the transmission medium.

In coding theory and information theory, a Z-channel or binary asymmetric channel is a communications channel used to model the behaviour of some data storage systems.

YouTube Encyclopedic

  • 1/5
    Views:
    16 188
    15 029
    35 258
    29 353
    88 414
  • Mod-01 Lec-25 Calculation of Channel Capacity for Different Information Channel
  • Fundamentals of Probability Theory (4/12): Binary Symmetric Channel
  • Introduction to channel capacity | Journey into information theory | Computer Science | Khan Academy
  • Source encoding | Journey into information theory | Computer Science | Khan Academy
  • What is information theory? | Journey into information theory | Computer Science | Khan Academy

Transcription

Definition

A Z-channel is a channel with binary input and binary output, where each 0 bit is transmitted correctly, but each 1 bit has probability p of being transmitted incorrectly as a 0, and probability 1–p of being transmitted correctly as a 1. In other words, if X and Y are the random variables describing the probability distributions of the input and the output of the channel, respectively, then the crossovers of the channel are characterized by the conditional probabilities:[1]

Capacity

The channel capacity of the Z-channel with the crossover 1 → 0 probability p, when the input random variable X is distributed according to the Bernoulli distribution with probability for the occurrence of 0, is given by the following equation:

where for the binary entropy function .

This capacity is obtained when the input variable X has Bernoulli distribution with probability of having value 0 and of value 1, where:

For small p, the capacity is approximated by

as compared to the capacity of the binary symmetric channel with crossover probability p.

For any p, (i.e. more 0s should be transmitted than 1s) because transmitting a 1 introduces noise. As , the limiting value of is .[2]

Bounds on the size of an asymmetric-error-correcting code

Define the following distance function on the words of length n transmitted via a Z-channel

Define the sphere of radius t around a word of length n as the set of all the words at distance t or less from , in other words,

A code of length n is said to be t-asymmetric-error-correcting if for any two codewords , one has . Denote by the maximum number of codewords in a t-asymmetric-error-correcting code of length n.

The Varshamov bound. For n≥1 and t≥1,

The constant-weight[clarification needed] code bound. For n > 2t ≥ 2, let the sequence B0, B1, ..., Bn-2t-1 be defined as

for .

Then

Notes

  1. ^ MacKay (2003), p. 148.
  2. ^ a b MacKay (2003), p. 159.

References

  • MacKay, David J.C. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge University Press. ISBN 0-521-64298-1.
  • Kløve, T. (1981). "Error correcting codes for the asymmetric channel". Technical Report 18–09–07–81. Norway: Department of Informatics, University of Bergen.
  • Verdú, S. (1997). "Channel Capacity (73.5)". The electrical engineering handbook (second ed.). IEEE Press and CRC Press. pp. 1671–1678.
  • Tallini, L.G.; Al-Bassam, S.; Bose, B. (2002). On the capacity and codes for the Z-channel. Proceedings of the IEEE International Symposium on Information Theory. Lausanne, Switzerland. p. 422.
This page was last edited on 7 August 2023, at 14:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.