To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time. 4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds # Wrapped exponential distribution

Parameters Probability density function The support is chosen to be [0,2π] Cumulative distribution function The support is chosen to be [0,2π] $\lambda >0$ $0\leq \theta <2\pi$ ${\frac {\lambda e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}}$ ${\frac {1-e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}}$ $\arctan(1/\lambda )$ (circular) $1-{\frac {\lambda }{\sqrt {1+\lambda ^{2}}}}$ (circular) $1+\ln \left({\frac {\beta -1}{\lambda }}\right)-{\frac {\beta }{\beta -1}}\ln(\beta )$ where $\beta =e^{2\pi \lambda }$ (differential) ${\frac {1}{1-in/\lambda }}$ In probability theory and directional statistics, a wrapped exponential distribution is a wrapped probability distribution that results from the "wrapping" of the exponential distribution around the unit circle.

• 1/5
Views:
19 885
1 606
838
464
15 666
• 4. Poisson (the Perfect Arrival Process)
• Karl T. Ulrich "The Importance of the Raw Idea in Innovation; Testing the Sow's Ear Hypothesis"
• 3g Stability of the MHD equilibrium
• Karatbars Marketing Tool
• Lec 22 | MIT 3.091SC Introduction to Solid State Chemistry, Fall 2010

## Definition

The probability density function of the wrapped exponential distribution is

$f_{WE}(\theta ;\lambda )=\sum _{k=0}^{\infty }\lambda e^{-\lambda (\theta +2\pi k)}={\frac {\lambda e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}},$ for $0\leq \theta <2\pi$ where $\lambda >0$ is the rate parameter of the unwrapped distribution. This is identical to the truncated distribution obtained by restricting observed values X from the exponential distribution with rate parameter λ to the range $0\leq X<2\pi$ .

## Characteristic function

The characteristic function of the wrapped exponential is just the characteristic function of the exponential function evaluated at integer arguments:

$\varphi _{n}(\lambda )={\frac {1}{1-in/\lambda }}$ which yields an alternate expression for the wrapped exponential PDF in terms of the circular variable z=e i (θ-m) valid for all real θ and m:

{\begin{aligned}f_{WE}(z;\lambda )&={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }{\frac {z^{-n}}{1-in/\lambda }}\\[10pt]&={\begin{cases}{\frac {\lambda }{\pi }}\,{\textrm {Im}}(\Phi (z,1,-i\lambda ))-{\frac {1}{2\pi }}&{\text{if }}z\neq 1\\[12pt]{\frac {\lambda }{1-e^{-2\pi \lambda }}}&{\text{if }}z=1\end{cases}}\end{aligned}} where $\Phi ()$ is the Lerch transcendent function.

## Circular moments

In terms of the circular variable $z=e^{i\theta }$ the circular moments of the wrapped exponential distribution are the characteristic function of the exponential distribution evaluated at integer arguments:

$\langle z^{n}\rangle =\int _{\Gamma }e^{in\theta }\,f_{WE}(\theta ;\lambda )\,d\theta ={\frac {1}{1-in/\lambda }},$ where $\Gamma \,$ is some interval of length $2\pi$ . The first moment is then the average value of z, also known as the mean resultant, or mean resultant vector:

$\langle z\rangle ={\frac {1}{1-i/\lambda }}.$ The mean angle is

$\langle \theta \rangle =\mathrm {Arg} \langle z\rangle =\arctan(1/\lambda ),$ and the length of the mean resultant is

$R=|\langle z\rangle |={\frac {\lambda }{\sqrt {1+\lambda ^{2}}}}.$ and the variance is then 1-R.

## Characterisation

The wrapped exponential distribution is the maximum entropy probability distribution for distributions restricted to the range $0\leq \theta <2\pi$ for a fixed value of the expectation $\operatorname {E} (\theta )$ .