To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

William Giauque

From Wikipedia, the free encyclopedia

William Francis Giauque
William Giauque Nobel.jpg
Born(1895-05-12)May 12, 1895
DiedMarch 28, 1982(1982-03-28) (aged 86)
Alma materUniversity of California, Berkeley
AwardsElliott Cresson Medal (1937)
Nobel Prize for Chemistry (1949)
Willard Gibbs Award (1951)
Scientific career
FieldsPhysical chemistry
InstitutionsUniversity of California, Berkeley

William Francis Giauque (/iˈk/;[1] May 12, 1895 – March 28, 1982) was an American chemist and Nobel laureate recognized in 1949 for his studies in the properties of matter at temperatures close to absolute zero. He spent virtually all of his educational and professional career at the University of California, Berkeley.

YouTube Encyclopedic

  • 1/1
  • ✪ Dow Distinguished Lecture: John W. Cahn, NIST




William Francis Giauque was born in Niagara Falls, Ontario, on May 12, 1895.

As his parents were U.S. citizens, they returned to the U.S. where he attended public schools primarily in Michigan. Following the death of his father in 1908, the family returned to Niagara Falls, where he studied at the Niagara Falls Collegiate Institute. After graduation, he looked for work in various power plants at Niagara Falls both for financial reasons and to pursue a career in electrical engineering. He was widely unsuccessful.

Eventually, however, his application was accepted by the Hooker Electro-Chemical Company in Niagara Falls, New York, which led him to employment in their laboratory. He enjoyed the work, and decided to become a chemical engineer.

After two years of employment, he entered the College of Chemistry of the University of California, Berkeley, where he received a bachelor of science degree with honors in 1920. He entered graduate school at Berkeley, becoming a University Fellow (1920–1921) and a James M. Goewey Fellow (1921–1922). He received the Ph.D. degree in chemistry with a minor in physics in 1922.


Although he began university study with an interest in becoming an engineer, he soon developed an interest in research under the influence of Professor Gilbert N. Lewis. Due to his outstanding performance as a student, he became an Instructor of Chemistry at Berkeley in 1922 and after passing through various grades of professorship, he became a full Professor of Chemistry in 1934. He retired in 1962.

Absolute zero

He became interested in the third law of thermodynamics as a field of research during his experimental research for his Ph.D. research under Professor George Ernest Gibson comparing the relative entropies of glycerine crystals and glass.

The principal objective of his researches was to demonstrate through range of appropriate tests that the third law of thermodynamics is a basic natural law. In 1926, he proposed a method for observing temperatures considerably below 1 Kelvin (1 K is −457.87 °F or −272.15 °C). His work with D.P. MacDougall between 1933 and 1935 successfully employed them.

He developed a magnetic refrigeration device of his own design in order to achieve this outcome, getting closer to absolute zero than many scientists had thought possible. This trailblazing work, apart from proving one of the fundamental laws of nature led to stronger steel, better gasoline and more efficient processes in a range of industries.

His researches and that of his students included a large number of entropy determinations from low temperature measurements, particularly on condensed gases. The entropies and other thermodynamic properties of many gases were also determined from quantum statistics and molecular energy levels available from band spectra as well as other sources.

His correlated investigations of the entropy of oxygen with Dr. Herrick L. Johnston, led to the discovery of oxygen isotopes 17 and 18 in the Earth's atmosphere and showed that physicists and chemists had been using different scales of atomic weight for years without recognising it.

Personal life

In 1932, Giauque married Dr. Muriel Frances Ashley and they had two sons. He died on March 28, 1982 in Berkeley, California.


  1. ^ The Columbia Electronic Encyclopedia, 2004.


  • Shampo, Marc A; Kyle, Robert A; Steensma, David P (2006). "Stamp vignette on medical science. William F. Giauque—Nobel Prize for low-temperature research". Mayo Clin. Proc. 81 (5) (published May 2006). p. 587. doi:10.4065/81.5.587. PMID 16706253.

External links

This page was last edited on 17 December 2019, at 03:26
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.