To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Wilkinson power divider

From Wikipedia, the free encyclopedia

Power divider in microstrip technology

In the field of microwave engineering and circuit design, the Wilkinson Power Divider is a specific class of power divider circuit that can achieve isolation between the output ports while maintaining a matched condition on all ports. The Wilkinson design can also be used as a power combiner because it is made up of passive components and hence is reciprocal. First published by Ernest J. Wilkinson in 1960,[1] this circuit finds wide use in radio frequency communication systems utilizing multiple channels since the high degree of isolation between the output ports prevents crosstalk between the individual channels.

It uses quarter wave transformers, which can be easily fabricated as quarter wave lines on printed circuit boards. It is also possible to use other forms of transmission line (e.g. coaxial cable) or lumped circuit elements (inductors and capacitors).[2]

YouTube Encyclopedic

  • 1/3
    Views:
    12 918
    7 660
    10 930
  • ECE3300 Lecture 8-7 quarter wave transformer
  • Derivation of the Hybrid Branchline Coupler, Part I
  • Power Divider Waveguides using Periodic Band Gap Structure - FDTD Simulation/Animation

Transcription

Theory

Picture shows a typical output expected from a Wilkinson power divider. The are almost -3 dB, and the is low near the design frequency.
Picture demonstrates a very high isolation between output ports (port 2 & 3) of a Wilkinson power divider

The scattering parameters for the common case of a 2-way equal-split Wilkinson power divider at the design frequency is given by[3]

Inspection of the S matrix reveals that the network is reciprocal (), that the terminals are matched (), that the output terminals are isolated (=0), and that equal power division is achieved (). The non-unitary matrix results from the fact that the network is lossy. An ideal Wilkinson divider would yield .

Network theorem governs that a divider cannot satisfy all three conditions (being matched, reciprocal and loss-less) at the same time. Wilkinson divider satisfies the first two (matched and reciprocal), and cannot satisfy the last one (being loss-less). Hence, there is some loss occurring in the network.

No loss occurs when the signals at ports 2 and 3 are in phase and have equal magnitude. In case of noise input to ports 2 and 3, the noise level at port 1 does not increase, half of the noise power is dissipated in the resistor.

By cascading, the input power might be divided to any -number of outputs.


Unequal/Asymmetric Division Through Wilkinson Divider

If the arms for port 2 and 3 are connected with un-equal impedances, then asymmetric division of power can be achieved. When characteristic impedance is , and one wants to split power as and , and , then the design can be created following the equations:

A new constant is defined for ease of expression, where

Impedances are different in two branches to achieve unequal splitting of power. The output impedances of the two branches are also different.

Then the design guideline is[4]:




The equal-splitting Wilkinson Divider is obtained for .

See also

References

  1. ^ E.J. Wilkinson, "An N-way Power Divider", IRE Trans. on Microwave Theory and Techniques, vol. 8, p. 116-118, Jan. 1960, doi: 10.1109/TMTT.1960.1124668
  2. ^ "Overview and essentials of the Wilkinson divider splitter combiner". Radio-electronics.com. Retrieved 6 February 2013.
  3. ^ D.M. Pozar, Microwave Engineering, Third Edition, John Wiley & Sons: New York, 2005
  4. ^ D.M. Pozar, Microwave Engineering, Third Edition, John Wiley & Sons: New York, 2005

External links

This page was last edited on 15 May 2023, at 23:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.