To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Wilhelmy plate

From Wikipedia, the free encyclopedia

Illustration of Wilhelmy plate method. The magnitude of the capillary force on the plate is proportional to the wetted perimeter, , and to the surface tension of the liquid-air interface.

A Wilhelmy plate is a thin plate that is used to measure equilibrium surface or interfacial tension at an air–liquid or liquid–liquid interface. In this method, the plate is oriented perpendicular to the interface, and the force exerted on it is measured. Based on the work of Ludwig Wilhelmy, this method finds wide use in the preparation and monitoring of Langmuir films.

YouTube Encyclopedic

  • 1/2
    Views:
    1 146
    436
  • LB FILM INTRO
  • A Drop of Tension

Transcription

Detailed description

The Wilhelmy plate consists of a thin plate usually on the order of a few square centimeters in area. The plate is often made from filter paper, glass or platinum which may be roughened to ensure complete wetting. In fact, the results of the experiment do not depend on the material used, as long as the material is wetted by the liquid.[1] The plate is cleaned thoroughly and attached to a balance with a thin metal wire. The force on the plate due to wetting is measured using a tensiometer or microbalance and used to calculate the surface tension () using the Wilhelmy equation:

where is the wetted perimeter (), is the plate width, is the plate thickness, and is the contact angle between the liquid phase and the plate. In practice the contact angle is rarely measured; instead, either literature values are used or complete wetting () is assumed.

Advantages and short brief

If complete wetting is assumed (contact angle = 0), no correction factors are required to calculate surface tensions when using the Wilhelmy plate, unlike for a du Noüy ring. In addition, because the plate is not moved during measurements, the Wilhelmy plate allows accurate determination of surface kinetics on a wide range of timescales, and it displays low operator variance. In a typical plate experiment, the plate is lowered to the surface being analyzed until a meniscus is formed, and then raised so that the bottom edge of the plate lies on the plane of the undisturbed surface. If measuring a buried interface, the second (less dense) phase is then added on top of the undisturbed primary (denser) phase in such a way as to not disturb the meniscus. The force at equilibrium can then be used to determine the absolute surface or interfacial tension. Due to a large wetted area of the plate, the measurement is less susceptible for measurement errors than when using a smaller probe. Also, the method has been described in several international measurement standards.

See also

Further reading

  • Holmberg, K (ed.) Handbook of Applied Surface and Colloid Chemistry New York, Wiley and Sons: 2002. Vol. 2, p. 219


References

  1. ^ Butt, Hans-Jürgen; Graf, Karlheinz; Kappl, Michael (2006). Physics and chemistry of interfaces (2., rev. and enl. ed.). Weinheim: Wiley-VCH-Verl. p. 16. ISBN 9783527406296.
This page was last edited on 6 December 2022, at 22:41
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.