To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Wigner–Seitz radius

From Wikipedia, the free encyclopedia

The Wigner–Seitz radius , named after Eugene Wigner and Frederick Seitz, is the radius of a sphere whose volume is equal to the mean volume per atom in a solid (for first group metals).[1] In the more general case of metals having more valence electrons, is the radius of a sphere whose volume is equal to the volume per a free electron.[2] This parameter is used frequently in condensed matter physics to describe the density of a system. Worth to mention, is calculated for bulk materials.

YouTube Encyclopedic

  • 1/3
    Views:
    7 065
    7 328
    4 209
  • fcc structure: Wigner-Seitz cell, primitive cell and conventional unit cell
  • bcc structure: Wigner-Seitz cell, primitive cell and conventional unit cell
  • 16 Wigner Seitz Method

Transcription

Formula

In a 3-D system with free valence electrons in a volume , the Wigner–Seitz radius is defined by

where is the particle density. Solving for we obtain

The radius can also be calculated as

where is molar mass, is count of free valence electrons per particle, is mass density and is the Avogadro constant.

This parameter is normally reported in atomic units, i.e., in units of the Bohr radius.

Assuming that each atom in a simple metal cluster occupies the same volume as in a solid, the radius of the cluster is given by

where n is the number of atoms.[3][4]

Values of for the first group metals:[2]

Element
Li 3.25
Na 3.93
K 4.86
Rb 5.20
Cs 5.62

Wigner–Seitz radius is related to the electronic density by the formula

where, ρ can be regarded as the average electronic density in the outer portion of the Wigner-Seitz cell.[5]

See also

References

  1. ^ Girifalco, Louis A. (2003). Statistical mechanics of solids. Oxford: Oxford University Press. p. 125. ISBN 978-0-19-516717-7.
  2. ^ a b *Ashcroft, Neil W.; Mermin, N. David (1976). Solid State Physics. Holt, Rinehart and Winston. ISBN 0-03-083993-9.
  3. ^ Bréchignac, Catherine; Houdy, Philippe; Lahmani, Marcel, eds. (2007). Nanomaterials and nanochemistry. Berlin Heidelberg: Springer. ISBN 978-3-540-72992-1.
  4. ^ "Radius of Cluster using Wigner Seitz Radius Calculator | Calculate Radius of Cluster using Wigner Seitz Radius". www.calculatoratoz.com. Retrieved 2024-05-28.
  5. ^ Politzer, Peter; Parr, Robert G.; Murphy, Danny R. (1985-05-15). "Approximate determination of Wigner-Seitz radii from free-atom wave functions". Physical Review B. 31 (10): 6809–6810. doi:10.1103/PhysRevB.31.6809. ISSN 0163-1829. PMID 9935571.


This page was last edited on 28 May 2024, at 02:32
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.