To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Widespread fatigue damage

From Wikipedia, the free encyclopedia

Widespread fatigue caused the in-flight failure of the fuselage on Aloha Airlines Flight 243

Widespread fatigue damage (WFD) in a structure is characterised by the simultaneous presence of fatigue cracks at multiple points that are of sufficient size and density that while individually they may be acceptable, link-up of the cracks could suddenly occur and the structure could fail.[1] For example, small fatigue cracks developing along a row of fastener holes can coalesce increasing the stress on adjacent cracked sites increasing the rate of growth of those cracks. The objective of a designer is to determine when large numbers of small cracks could degrade the joint strength to an unacceptable level.[2] The in-flight loss of part of the fuselage from Aloha Airlines Flight 243 was attributed to multi-site fatigue damage.

YouTube Encyclopedic

  • 1/3
    Views:
    22 580
    3 268
    89 961
  • Essential Oils As Medicine: Essential Oils Guide
  • Can Depression Be Cured? New Research on Depression and its Treatments
  • Lupus Pictures- Symptoms, Causes and treatment of Lupus rash - SLE

Transcription

Categories of WFD

Several factors can influence the occurrence of WFD, like Design issues and Probabilistic parameters like manufacturing, environment etc. Two categories of WFD are:

Multi-Site Damage (MSD)

MSD is the simultaneous presence of fatigue cracks in the same structural element.

Multi-Element Damage (MED)

MED is the simultaneous presence of fatigue cracks in similar adjacent structural elements.

Difficulty in determining WFD occurrence

Main difficulties involved are:

  • Cracks associated with MSD and MED are so small initially that they cannot be detected with existing inspection methods.
  • Fatigue cracks related to WFD grow rapidly. Therefore operators are not able to detect the cracks before they cause structural failure.

Rule to predict the occurrence of WFD

First, a parameter called Limits Of Validity (LOV) is defined.[1] LOV is defined as “the period of time (in flight cycles, hours or both) up to which WFD will not occur in aeroplane structure.”

The steps followed are:

  • Evaluation of structural configurations and determination of LOV based on fatigue test evidence.
  • Provide warnings to preclude the development of WFD up to LOV.
  • Adopt LOV values as a criterion to determine the life of aeroplane.
  • Stop the operation of aeroplanes when LOV is reached.

References

  1. ^ a b Hoggard, Amos W.; Johnson, Stephen R. "Understanding the new Widespread fatigue damage rule". Boeing. Retrieved 30 July 2019.
  2. ^ "Federal Register, Aging aeroplane program"
This page was last edited on 31 January 2020, at 23:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.