To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time. 4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds In homotopy theory (a branch of mathematics), the Whitehead theorem states that if a continuous mapping f between CW complexes X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he introduced there. It is a model result of algebraic topology, in which the behavior of certain algebraic invariants (in this case, homotopy groups) determines a topological property of a mapping.

## Statement

In more detail, let X and Y be topological spaces. Given a continuous mapping

$f\colon X\to Y$ and a point x in X, consider for any n ≥ 1 the induced homomorphism

$f_{*}\colon \pi _{n}(X,x)\to \pi _{n}(Y,f(x)),$ where πn(X,x) denotes the n-th homotopy group of X with base point x. (For n = 0, π0(X) just means the set of path components of X.) A map f is a weak homotopy equivalence if the function

$f_{*}\colon \pi _{0}(X)\to \pi _{0}(Y)$ is bijective, and the homomorphisms f* are bijective for all x in X and all n ≥ 1. (For X and Y path-connected, the first condition is automatic, and it suffices to state the second condition for a single point x in X.) The Whitehead theorem states that a weak homotopy equivalence from one CW complex to another is a homotopy equivalence. (That is, the map f: XY has a homotopy inverse g: YX, which is not at all clear from the assumptions.) This implies the same conclusion for spaces X and Y that are homotopy equivalent to CW complexes.

Combining this with the Hurewicz theorem yields a useful corollary: a continuous map $f\colon X\to Y$ between simply connected CW complexes that induces an isomorphism on all integral homology groups is a homotopy equivalence.

## Spaces with isomorphic homotopy groups may not be homotopy equivalent

A word of caution: it is not enough to assume πn(X) is isomorphic to πn(Y) for each n in order to conclude that X and Y are homotopy equivalent. One really needs a map f : XY inducing an isomorphism on homotopy groups. For instance, take X= S2 × RP3 and Y= RP2 × S3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S2 × S3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not homotopy equivalent.

The Whitehead theorem does not hold for general topological spaces or even for all subspaces of Rn. For example, the Warsaw circle, a compact subset of the plane, has all homotopy groups zero, but the map from the Warsaw circle to a single point is not a homotopy equivalence. The study of possible generalizations of Whitehead's theorem to more general spaces is part of the subject of shape theory.

## Generalization to model categories

In any model category, a weak equivalence between cofibrant-fibrant objects is a homotopy equivalence.

Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.