To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Wheel graph
Several examples of wheel graphs
Verticesn ≥ 4
Edges2(n − 1)
Diameter2 if n > 4
1 if n = 4
Girth3
Chromatic number4 if n is even
3 if n is odd
Spectrum
PropertiesHamiltonian
Self-dual
Planar
NotationWn
Table of graphs and parameters

In the mathematical discipline of graph theory, a wheel graph is a graph formed by connecting a single universal vertex to all vertices of a cycle. A wheel graph with n vertices can also be defined as the 1-skeleton of an (n – 1)-gonal pyramid. Some authors[1] write Wn to denote a wheel graph with n vertices (n ≥ 4); other authors[2] instead use Wn to denote a wheel graph with n + 1 vertices (n ≥ 3), which is formed by connecting a single vertex to all vertices of a cycle of length n. The rest of this article uses the former notation.

YouTube Encyclopedic

  • 1/3
    Views:
    10 161
    3 891
    4 589
  • WHEEL GRAPH|| GRAPH THEORY & TREES || DISCRETE MATHEMATICS || OU EDUCATION
  • Discrete mathematics( Null graph, Cycle graph, Wheel graph, .....) explanation with example
  • Wheel Graph | Types of graph | discrete mathematics

Transcription

Set-builder construction

Given a vertex set of {1, 2, 3, …, v}, the edge set of the wheel graph can be represented in set-builder notation by {{1, 2}, {1, 3}, …, {1, v}, {2, 3}, {3, 4}, …, {v − 1, v}, {v, 2}}.[3]

Properties

Wheel graphs are planar graphs, and have a unique planar embedding. More specifically, every wheel graph is a Halin graph. They are self-dual: the planar dual of any wheel graph is an isomorphic graph. Every maximal planar graph, other than K4 = W4, contains as a subgraph either W5 or W6.

There is always a Hamiltonian cycle in the wheel graph and there are cycles in Wn (sequence A002061 in the OEIS).

The 7 cycles of the wheel graph W4.

For odd values of n, Wn is a perfect graph with chromatic number 3: the vertices of the cycle can be given two colors, and the center vertex given a third color. For even n, Wn has chromatic number 4, and (when n ≥ 6) is not perfect. W7 is the only wheel graph that is a unit distance graph in the Euclidean plane.[4]

The chromatic polynomial of the wheel graph Wn is :

In matroid theory, two particularly important special classes of matroids are the wheel matroids and the whirl matroids, both derived from wheel graphs. The k-wheel matroid is the graphic matroid of a wheel Wk+1, while the k-whirl matroid is derived from the k-wheel by considering the outer cycle of the wheel, as well as all of its spanning trees, to be independent.

The wheel W6 supplied a counterexample to a conjecture of Paul Erdős on Ramsey theory: he had conjectured that the complete graph has the smallest Ramsey number among all graphs with the same chromatic number, but Faudree and McKay (1993) showed W6 has Ramsey number 17 while the complete graph with the same chromatic number, K4, has Ramsey number 18.[5] That is, for every 17-vertex graph G, either G or its complement contains W6 as a subgraph, while neither the 17-vertex Paley graph nor its complement contains a copy of K4.

References

  1. ^ Weisstein, Eric W. "Wheel Graph". MathWorld.
  2. ^ Rosen, Kenneth H. (2011). Discrete Mathematics and Its Applications (7th ed.). McGraw-Hill. p. 655. ISBN 978-0073383095.
  3. ^ Trudeau, Richard J. (1993). Introduction to Graph Theory (Corrected, enlarged republication. ed.). New York: Dover Pub. p. 56. ISBN 978-0-486-67870-2. Retrieved 8 August 2012.
  4. ^ Buckley, Fred; Harary, Frank (1988), "On the euclidean dimension of a wheel", Graphs and Combinatorics, 4 (1): 23–30, doi:10.1007/BF01864150, S2CID 44596093.
  5. ^ Faudree, Ralph J.; McKay, Brendan D. (1993), "A conjecture of Erdős and the Ramsey number r(W6)", J. Combinatorial Math. and Combinatorial Comput., 13: 23–31.
This page was last edited on 25 March 2024, at 21:07
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.