To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

A Werner state[1] is a × -dimensional bipartite quantum state density matrix that is invariant under all unitary operators of the form . That is, it is a bipartite quantum state that satisfies

for all unitary operators U acting on d-dimensional Hilbert space. These states were first developed by Reinhard F. Werner in 1989.

General definition

Every Werner state is a mixture of projectors onto the symmetric and antisymmetric subspaces, with the relative weight being the main parameter that defines the state, in addition to the dimension :

where

are the projectors and

is the permutation or flip operator that exchanges the two subsystems A and B.

Werner states are separable for p12 and entangled for p < 12. All entangled Werner states violate the PPT separability criterion, but for d ≥ 3 no Werner state violates the weaker reduction criterion. Werner states can be parametrized in different ways. One way of writing them is

where the new parameter α varies between −1 and 1 and relates to p as

Two-qubit example

Two-qubit Werner states, corresponding to above, can be written explicitly in matrix form as

Equivalently, these can be written as a convex combination of the totally mixed state with (the projection onto) a Bell state:
where (or, confining oneself to positive values, ) is related to by . Then, two-qubit Werner states are separable for and entangled for .

Werner-Holevo channels

A Werner-Holevo quantum channel with parameters and integer is defined as [2] [3] [4]

where the quantum channels and are defined as

and denotes the partial transpose map on system A. Note that the Choi state of the Werner-Holevo channel is a Werner state:

where .

Multipartite Werner states

Werner states can be generalized to the multipartite case.[5] An N-party Werner state is a state that is invariant under for any unitary U on a single subsystem. The Werner state is no longer described by a single parameter, but by N! − 1 parameters, and is a linear combination of the N! different permutations on N systems.

References

  1. ^ Reinhard F. Werner (1989). "Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model". Physical Review A. 40 (8): 4277–4281. Bibcode:1989PhRvA..40.4277W. doi:10.1103/PhysRevA.40.4277. PMID 9902666.
  2. ^ Reinhard F. Werner and Alexander S. Holevo (2002). "Counterexample to an additivity conjecture for output purity of quantum channels". Journal of Mathematical Physics. 43 (9): 4353–4357. arXiv:quant-ph/0203003. Bibcode:2002JMP....43.4353W. doi:10.1063/1.1498491. S2CID 42832247.
  3. ^ Fannes, Mark; Haegeman, B.; Mosonyi, Milan; Vanpeteghem, D. (2004). "Additivity of minimal entropy out- put for a class of covariant channels". unpublished. arXiv:quant-ph/0410195. Bibcode:2004quant.ph.10195F.
  4. ^ Debbie Leung and William Matthews (2015). "On the power of PPT-preserving and non-signalling codes". IEEE Transactions on Information Theory. 61 (8): 4486–4499. arXiv:1406.7142. doi:10.1109/TIT.2015.2439953. S2CID 14083225.
  5. ^ Eggeling, Tilo; Werner, Reinhard (2001). "Separability properties of tripartite states with UxUxU-symmetry". Physical Review A. 63: 042111. arXiv:quant-ph/0010096. doi:10.1103/PhysRevA.63.042111. S2CID 119350302.
This page was last edited on 15 December 2023, at 15:00
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.