To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Weinstein–Aronszajn identity

From Wikipedia, the free encyclopedia

In mathematics, the Weinstein–Aronszajn identity states that if and are matrices of size m × n and n × m respectively (either or both of which may be infinite) then, provided (and hence, also ) is of trace class,

where is the k × k identity matrix.

It is closely related to the matrix determinant lemma and its generalization. It is the determinant analogue of the Woodbury matrix identity for matrix inverses.

Proof

The identity may be proved as follows.[1] Let be a matrix consisting of the four blocks , , and :

Because Im is invertible, the formula for the determinant of a block matrix gives

Because In is invertible, the formula for the determinant of a block matrix gives

Thus

Substituting for then gives the Weinstein–Aronszajn identity.

Applications

Let . The identity can be used to show the somewhat more general statement that

It follows that the non-zero eigenvalues of and are the same.

This identity is useful in developing a Bayes estimator for multivariate Gaussian distributions.

The identity also finds applications in random matrix theory by relating determinants of large matrices to determinants of smaller ones.[2]

References

  1. ^ Pozrikidis, C. (2014), An Introduction to Grids, Graphs, and Networks, Oxford University Press, p. 271, ISBN 9780199996735
  2. ^ "The mesoscopic structure of GUE eigenvalues | What's new". Terrytao.wordpress.com. Retrieved 2016-01-16.


This page was last edited on 6 July 2023, at 09:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.