To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Web (differential geometry)

From Wikipedia, the free encyclopedia

In mathematics, a web permits an intrinsic characterization in terms of Riemannian geometry of the additive separation of variables in the Hamilton–Jacobi equation.[1][2]

YouTube Encyclopedic

  • 1/3
    Views:
    68 421
    64 467
    11 123
  • MathHistory16: Differential Geometry
  • DiffGeom1: Classical curves
  • DiffGeom7: Differential geometry with finite fields

Transcription

Formal definition

An orthogonal web on a Riemannian manifold (M,g) is a set of n pairwise transversal and orthogonal foliations of connected submanifolds of codimension 1 and where n denotes the dimension of M.

Note that two submanifolds of codimension 1 are orthogonal if their normal vectors are orthogonal and in a nondefinite metric orthogonality does not imply transversality.

Alternative definition

Given a smooth manifold of dimension n, an orthogonal web (also called orthogonal grid or Ricci’s grid) on a Riemannian manifold (M,g) is a set[3] of n pairwise transversal and orthogonal foliations of connected submanifolds of dimension 1.

Remark

Since vector fields can be visualized as stream-lines of a stationary flow or as Faraday’s lines of force, a non-vanishing vector field in space generates a space-filling system of lines through each point, known to mathematicians as a congruence (i.e., a local foliation). Ricci’s vision filled Riemann’s n-dimensional manifold with n congruences orthogonal to each other, i.e., a local orthogonal grid.

Differential geometry of webs

A systematic study of webs was started by Blaschke in the 1930s. He extended the same group-theoretic approach to web geometry.

Classical definition

Let be a differentiable manifold of dimension N=nr. A d-web W(d,n,r) of codimension r in an open set is a set of d foliations of codimension r which are in general position.

In the notation W(d,n,r) the number d is the number of foliations forming a web, r is the web codimension, and n is the ratio of the dimension nr of the manifold M and the web codimension. Of course, one may define a d-web of codimension r without having r as a divisor of the dimension of the ambient manifold.

See also

Notes

  1. ^ S. Benenti (1997). "Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation". J. Math. Phys. 38 (12): 6578–6602. Bibcode:1997JMP....38.6578B. doi:10.1063/1.532226.
  2. ^ Chanu, Claudia; Rastelli, Giovanni (2007). "Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds". SIGMA. 3: 021, 21 pages. arXiv:nlin/0612042. Bibcode:2007SIGMA...3..021C. doi:10.3842/sigma.2007.021. S2CID 3100911.
  3. ^ G. Ricci-Curbastro (1896). "Dei sistemi di congruenze ortogonali in una varietà qualunque". Mem. Acc. Lincei. 2 (5): 276–322.

References

  • Sharpe, R. W. (1997). Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. New York: Springer. ISBN 0-387-94732-9.
  • Dillen, F.J.E.; Verstraelen, L.C.A. (2000). Handbook of Differential Geometry. Vol. 1. Amsterdam: North-Holland. ISBN 0-444-82240-2.


This page was last edited on 19 April 2022, at 09:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.