To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Weakly compact cardinal

From Wikipedia, the free encyclopedia

In mathematics, a weakly compact cardinal is a certain kind of cardinal number introduced by Erdős & Tarski (1961); weakly compact cardinals are large cardinals, meaning that their existence cannot be proven from the standard axioms of set theory. (Tarski originally called them "not strongly incompact" cardinals.)

Formally, a cardinal κ is defined to be weakly compact if it is uncountable and for every function f: [κ] 2 → {0, 1} there is a set of cardinality κ that is homogeneous for f. In this context, [κ] 2 means the set of 2-element subsets of κ, and a subset S of κ is homogeneous for f if and only if either all of [S]2 maps to 0 or all of it maps to 1.

The name "weakly compact" refers to the fact that if a cardinal is weakly compact then a certain related infinitary language satisfies a version of the compactness theorem; see below.

YouTube Encyclopedic

  • 1/3
    Views:
    937
    21 569 642
    696
  • Sandra Müller: Lower bounds for the perfect set property at weakly compact cardinals
  • How To Count Past Infinity
  • Lec-19 Weak Cauchy Sequence | Weakly Compact & Weakly Closed Set | Weakly Complete Space

Transcription

Equivalent formulations

The following are equivalent for any uncountable cardinal κ:

  1. κ is weakly compact.
  2. for every λ<κ, natural number n ≥ 2, and function f: [κ]n → λ, there is a set of cardinality κ that is homogeneous for f. (Drake 1974, chapter 7 theorem 3.5)
  3. κ is inaccessible and has the tree property, that is, every tree of height κ has either a level of size κ or a branch of size κ.
  4. Every linear order of cardinality κ has an ascending or a descending sequence of order type κ. (W. W. Comfort, S. Negrepontis, The Theory of Ultrafilters, p.185)
  5. κ is -indescribable.
  6. κ has the extension property. In other words, for all UVκ there exists a transitive set X with κ ∈ X, and a subset SX, such that (Vκ, ∈, U) is an elementary substructure of (X, ∈, S). Here, U and S are regarded as unary predicates.
  7. For every set S of cardinality κ of subsets of κ, there is a non-trivial κ-complete filter that decides S.
  8. κ is κ-unfoldable.
  9. κ is inaccessible and the infinitary language Lκ,κ satisfies the weak compactness theorem.
  10. κ is inaccessible and the infinitary language Lκ,ω satisfies the weak compactness theorem.
  11. κ is inaccessible and for every transitive set of cardinality κ with κ , , and satisfying a sufficiently large fragment of ZFC, there is an elementary embedding from to a transitive set of cardinality κ such that , with critical point κ. (Hauser 1991, Theorem 1.3)
  12. κ is a strongly inaccessible ramifiable cardinal. (W. W. Comfort, S. Negrepontis, The Theory of Ultrafilters, p.185)
  13. ( defined as ) and every -complete filter of a -complete field of sets of cardinality is contained in a -complete ultrafilter. (W. W. Comfort, S. Negrepontis, The Theory of Ultrafilters, p.185)
  14. has Alexander's property, i.e. for any space with a -subbase with cardinality , and every cover of by elements of has a subcover of cardinality , then is -compact. (W. W. Comfort, S. Negrepontis, The Theory of Ultrafilters, p.182--185)
  15. is -compact. (W. W. Comfort, S. Negrepontis, The Theory of Ultrafilters, p.185)

A language Lκ,κ is said to satisfy the weak compactness theorem if whenever Σ is a set of sentences of cardinality at most κ and every subset with less than κ elements has a model, then Σ has a model. Strongly compact cardinals are defined in a similar way without the restriction on the cardinality of the set of sentences.

Properties

Every weakly compact cardinal is a reflecting cardinal, and is also a limit of reflecting cardinals. This means also that weakly compact cardinals are Mahlo cardinals, and the set of Mahlo cardinals less than a given weakly compact cardinal is stationary.

If is weakly compact, then there are chains of well-founded elementary end-extensions of of arbitrary length .[1]p.6

Weakly compact cardinals remain weakly compact in .[2] Assuming V = L, a cardinal is weakly compact iff it is 2-stationary.[3]

See also

References

  • Drake, F. R. (1974), Set Theory: An Introduction to Large Cardinals, Studies in Logic and the Foundations of Mathematics, vol. 76, Elsevier Science Ltd, ISBN 0-444-10535-2
  • Erdős, Paul; Tarski, Alfred (1961), "On some problems involving inaccessible cardinals", Essays on the foundations of mathematics, Jerusalem: Magnes Press, Hebrew Univ., pp. 50–82, MR 0167422
  • Hauser, Kai (1991), "Indescribable Cardinals and Elementary Embeddings", Journal of Symbolic Logic, Association for Symbolic Logic, 56 (2): 439–457, doi:10.2307/2274692, JSTOR 2274692, S2CID 288779
  • Kanamori, Akihiro (2003), The Higher Infinite : Large Cardinals in Set Theory from Their Beginnings (2nd ed.), Springer, ISBN 3-540-00384-3

Citations

  1. ^ Villaveces, Andres (1996). "Chains of End Elementary Extensions of Models of Set Theory". arXiv:math/9611209.
  2. ^ T. Jech, 'Set Theory: The third millennium edition' (2003)
  3. ^ Bagaria, Magidor, Mancilla. On the Consistency Strength of Hyperstationarity, p.3. (2019)
This page was last edited on 19 January 2024, at 08:19
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.