To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Wald–Wolfowitz runs test

From Wikipedia, the free encyclopedia

The Wald–Wolfowitz runs test (or simply runs test), named after statisticians Abraham Wald and Jacob Wolfowitz is a non-parametric statistical test that checks a randomness hypothesis for a two-valued data sequence. More precisely, it can be used to test the hypothesis that the elements of the sequence are mutually independent.

YouTube Encyclopedic

  • 1/3
    Views:
    48 332
    972
    1 795
  • RUN Test - Non Parametric Test for Small and Large Samples
  • Run Test For Randomness - A Mathematical Problem Solving
  • Wald Wolfowitz Two Sample Run Test with example

Transcription

Definition

A run of a sequence is a maximal non-empty segment of the sequence consisting of adjacent equal elements. For example, the 22-element-long sequence

+ + + + − − − + + + − − + + + + + + − − − −

consists of 6 runs, with lengths 4, 3, 3, 2, 6, and 4. The run test is based on the null hypothesis that each element in the sequence is independently drawn from the same distribution.

Under the null hypothesis, the number of runs in a sequence of N elements[note 1] is a random variable whose conditional distribution given the observation of N+ positive values[note 2] and N negative values (N = N+ + N) is approximately normal, with:[1][2]

Equivalently, the number of runs is .

These parameters do not assume that the positive and negative elements have equal probabilities of occurring, but only assume that the elements are independent and identically distributed. If the number of runs is significantly higher or lower than expected, the hypothesis of statistical independence of the elements may be rejected.

Proofs

Moments

The number of runs is . By independence, the expectation is

Writing out all possibilities, we find
Thus, . Now simplify the expression to get .

Similarly, the variance of the number of runs is

and simplifying, we obtain the variance.

Similarly we can calculate all moments of , but the algebra becomes uglier and uglier.

Asymptotic normality

Theorem. If we sample longer and longer sequences, with for some fixed , then converges in distribution to the normal distribution with mean 0 and variance 1.

Proof sketch. It suffices to prove the asymptotic normality of the sequence , which can be proven by a martingale central limit theorem.

Applications

Runs tests can be used to test:

  1. the randomness of a distribution, by taking the data in the given order and marking with + the data greater than the median, and with – the data less than the median (numbers equalling the median are omitted.)
  2. whether a function fits well to a data set, by marking the data exceeding the function value with + and the other data with −. For this use, the runs test, which takes into account the signs but not the distances, is complementary to the chi square test, which takes into account the distances but not the signs.

Related tests

The Kolmogorov–Smirnov test has been shown to be more powerful than the Wald–Wolfowitz test for detecting differences between distributions that differ solely in their location. However, the reverse is true if the distributions differ in variance and have at the most only a small difference in location.[citation needed]

The Wald–Wolfowitz runs test has been extended for use with several samples.[3][4][5][6]

Notes

  1. ^ N is the number of elements, not the number of runs.
  2. ^ N+ is the number of elements with positive values, not the number of positive runs

References

  1. ^ "Runs Test for Detecting Non-randomness".
  2. ^ Sample 33092: Wald–Wolfowitz (or runs) test for randomness
  3. ^ Magel, RC; Wibowo, SH (1997). "Comparing the Powers of the Wald–Wolfowitz and Kolmogorov–Smirnov Tests". Biometrical Journal. 39 (6): 665–675. doi:10.1002/bimj.4710390605.
  4. ^ Barton, DE; David, FN (1957). "Multiple runs". Biometrika. 44 (1–2): 168–178. doi:10.1093/biomet/44.1-2.168.
  5. ^ Sprent P, Smeeton NC (2007) Applied Nonparametric Statistical Methods, pp. 217–219. Boca Raton: Chapman & Hall/ CRC.
  6. ^ Alhakim, A; Hooper, W (2008). "A non-parametric test for several independent samples". Journal of Nonparametric Statistics. 20 (3): 253–261. CiteSeerX 10.1.1.568.6110. doi:10.1080/10485250801976741.

External links

This page was last edited on 6 April 2024, at 00:43
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.