To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Voronoi formula

From Wikipedia, the free encyclopedia

In mathematics, a Voronoi formula is an equality involving Fourier coefficients of automorphic forms, with the coefficients twisted by additive characters on either side. It can be regarded as a Poisson summation formula for non-abelian groups. The Voronoi (summation) formula for GL(2) has long been a standard tool for studying analytic properties of automorphic forms and their L-functions. There have been numerous results coming out the Voronoi formula on GL(2). The concept is named after Georgy Voronoy.

YouTube Encyclopedic

  • 1/3
    Views:
    63 644
    903
    9 234
  • Voronoi Diagram Intro Part 1 - Basic Concepts
  • BLENDERSUSHI / SV Math Formula Curve Script Node (LIVENODING128)
  • Mod-05 Lec-01 Properties of Mobius Transformations Part I

Transcription

Classical application

To Voronoy and his contemporaries, the formula appeared tailor-made to evaluate certain finite sums. That seemed significant because several important questions in number theory involve finite sums of arithmetic quantities. In this connection, let us mention two classical examples, Dirichlet’s divisor problem and the Gauss’ circle problem. The former estimates the size of d(n), the number of positive divisors of an integer n. Dirichlet proved

where is Euler’s constant ≈ 0.57721566. Gauss’ circle problem concerns the average size of

for which Gauss gave the estimate

Each problem has a geometric interpretation, with D(X) counting lattice points in the region , and lattice points in the disc . These two bounds are related, as we shall see, and come from fairly elementary considerations. In the series of papers Voronoy developed geometric and analytic methods to improve both Dirichlet’s and Gauss’ bound. Most importantly in retrospect, he generalized the formula by allowing weighted sums, at the expense of introducing more general integral operations on f than the Fourier transform.

Modern formulation

Let ƒ be a Maass cusp form for the modular group PSL(2,Z) and a(n) its Fourier coefficients. Let a,c be integers with (a,c) = 1. Let ω be a well-behaved test function. The Voronoi formula for ƒ states

where is a multiplicative inverse of a modulo c and Ω is a certain integral Hankel transform of ω. (see Good (1984))

References

  • Good, Anton (1984), "Cusp forms and eigenfunctions of the Laplacian", Mathematische Annalen, 255 (4): 523–548, doi:10.1007/bf01451932
  • Miller, S. D., & Schmid, W. (2006). Automorphic distributions, L-functions, and Voronoi summation for GL(3). Annals of mathematics, 423–488.
  • Voronoï, G. (1904). Sur une fonction transcendente et ses applications à la sommation de quelques séries. In Annales Scientifiques de l'École Normale Supérieure (Vol. 21, pp. 207–267).
This page was last edited on 25 October 2022, at 16:52
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.