To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Von Kármán constant

From Wikipedia, the free encyclopedia

In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition. The equation for such boundary layer flow profiles is:

where u is the mean flow velocity at height z above the boundary. The roughness height (also known as roughness length) z0 is where appears to go to zero. Further κ is the von Kármán constant being typically 0.41, and is the friction velocity which depends on the shear stress τw at the boundary of the flow:

with ρ the fluid density.

The Kármán constant is often used in turbulence modeling, for instance in boundary-layer meteorology to calculate fluxes of momentum, heat and moisture from the atmosphere to the land surface. It is considered to be a universal (κ ≈ 0.40).

Gaudio, Miglio and Dey argued that the Kármán constant is however nonuniversal in flows over mobile sediment beds.

In recent years the von Kármán constant has been subject to periodic scrutiny. Reviews (Foken, 2006; Hogstrom, 1988; Hogstrom, 1996) report values of κ between 0.35 and 0.42. The overall conclusion of over 18 studies is that κ is constant, close to 0.40.

YouTube Encyclopedic

  • 1/3
    Views:
    8 428
    581
    22 587
  • Introductory Fluid Mechanics L19 p3 - von Karman Momentum Integral Theory
  • Demo: Formation of a von Kármán vortex street using the Lattice-Boltzmann method (3D)
  • Blasius Solution for Boundary Layer Thickness

Transcription

See also

References

  • Bonan, G. B. (2005). "Land Surface Model (LSM 1.0) for Ecological, Hydrological, Atmospheric Studies. Model product". Available on-line [1] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.
  • Foken T. (2006). "50 years of the Monin-Obukhov similarity theory". Boundary-Layer Meteorology, Vol. 119, 431-447.
  • Gaudio, R. Miglio, R. and Dey, S. (2010). "Nonuniversality of von Kármán’s κ in fluvial streams". Journal of Hydraulic Research, International Association for Hydraulic Research (IAHR), Vol. 48, No. 5, 658-663
  • Hogstrom U (1996). "Review of some basic characteristics of the atmospheric surface layer". Boundary-Layer Meteorology, Vol. 78, 215-246.
  • Hogstrom U (1988). "Non-dimensional wind and temperature profiles in the atmospheric surface layer-a re-evaluation". Boundary Layer Meteorology, Vol. 42, 55-78.

External links

This page was last edited on 28 September 2017, at 06:14
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.