To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

From Wikipedia, the free encyclopedia

The void ratio of a mixture is the ratio of the volume of voids to volume of solids.

It is a dimensionless quantity in materials science, and is closely related to porosity as follows:


where is void ratio, is porosity, VV is the volume of void-space (such as fluids), VS is the volume of solids, and VT is the total or bulk volume. This figure is relevant in composites, in mining (particular with regard to the properties of tailings), and in soil science. In geotechnical engineering, it is considered as one of the state variables of soils and represented by the symbol e.[1][2]

Note that in geotechnical engineering, the symbol usually represents the angle of shearing resistance, a shear strength (soil) parameter. Because of this, the equation is usually rewritten using for porosity:


where is void ratio, is porosity, VV is the volume of void-space (air and water), VS is the volume of solids, and VT is the total or bulk volume.[3]

YouTube Encyclopedic

  • 1/3
    2 601
  • Civil engineering / 3 Phase Diagram in terms of VOID RATIO 'e'
  • Calculating Soil Properties (Void Ratio, Porosity, Saturation, Unit Weight)
  • Void ratio


Engineering applications

  • Volume change tendency control. If void ratio is high (loose soils) voids in a soil skeleton tend to minimize under loading - adjacent particles contract. The opposite situation, i.e. when void ratio is relatively small (dense soils), indicates that the volume of the soil is vulnerable to increase under loading - particles dilate.
  • Fluid conductivity control (ability of water movement through the soil). Loose soils show high conductivity, while dense soils are not so permeable.
  • Particles movement. In a loose soil particles can move quite easily, whereas in a dense one finer particles cannot pass through the voids, which leads to clogging.

See also


  1. ^ Lambe, T. William & Robert V. Whitman. Soil Mechanics. Wiley, 1991; p. 29. ISBN 978-0-471-51192-2
  2. ^ Santamarina, J. Carlos, Katherine A. Klein, & Moheb A. Fam. Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring. Wiley, 2001; pp. 35-36 & 51-53. ISBN 978-0-471-49058-6
  3. ^ Craig, R. F. Craig's Soil Mechanics. London: Spon, 2004, p.18. ISBN 0-203-49410-5.
This page was last edited on 6 August 2020, at 01:37
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.