To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Place of articulation

From Wikipedia, the free encyclopedia

Places of articulation (passive & active):
1. Exo-labial, 2. Endo-labial, 3. Dental, 4. Alveolar, 5. Post-alveolar, 6. Pre-palatal, 7. Palatal, 8. Velar, 9. Uvular, 10. Pharyngeal, 11. Glottal, 12. Epiglottal, 13. Radical, 14. Postero-dorsal, 15. Antero-dorsal, 16. Laminal, 17. Apical, 18. Sub-apical

In articulatory phonetics, the place of articulation (also point of articulation) of a consonant is a location along the vocal tract where its production occurs.[1]: 10  It is a point where a constriction is made between an active and a passive articulator. Active articulators are organs capable of voluntary movement which create the constriction, while passive articulators are so called because they are normally fixed and are the parts with which an active articulator makes contact.[2]: 24  Along with the manner of articulation and phonation, the place of articulation gives the consonant its distinctive sound.

Since vowels are produced with an open vocal tract, the point where their production occurs cannot be easily determined. Therefore, they are not described in terms of a place of articulation but by the relative positions in vowel space. This is mostly dependent on their formant frequencies and less on the specific tongue position and lip rounding.[3]: 34 

The terminology used in describing places of articulation has been developed to allow specifying of all theoretically possible contrasts. No known language distinguishes all of the places described in the literature so less precision is needed to distinguish the sounds of a particular language.[1]: 39 

YouTube Encyclopedic

  • 1/5
    Views:
    277 956
    23 205
    1 541
    74 989
    24 631
  • IPA Basics : Place of Articulation
  • Place of Articulation| Manner of Articulation| Place and Manner of Articulation of Consonants
  • Place of Articulation / Phonetics/ Linguistics
  • Voicing, Place & Manner of Articulation - Part 1
  • PHONETICS-5: Places of Articulation

Transcription

Youtube! Edgar here, and welcome to Artifexian. Here you will learn everything you ever wanted to know about worldbuilding...and then some! This is a cross section of the average human food hole. Complete with lips, a tongue and some teeth. A consonant is a speech sound produced when the airflow through the food hole, or vocal tract if you will, is to some degree obstructed. There are three key elements to any consonant: place of articulation, manner of articulation and voicing. In this video, let's look at place of articulation. Place of articulation, or point of articulation, indicates where in the mouth the obstruction is occurring when a consonant is formed. Now, to create an obstruction two bits of your mouth need to be brought together: the articulators. One articulator will move, the active articulator, and one will remain stationary, the passive articulator. Take the “f” sound in fish, for example. Here the lower lip is the active articulator and the upper teeth are the passive articulators. The lower lip moves to the upper teeth, an obstruction is created, air is blown through and boom, you get a [f] sound. There are about 12-ish places in the mouth where the articulators can be brought together to form an obstruction. There are: Bilabial, labiodental, Dental, Alveolar, Post-alveolar, Retroflex, Palatal, Velar, Uvular, Pharyngeal, Epi-glottal and Glottal. Let's break it down. 1. Bilabial. Here the obstruction is created using both the upper and lower lips. In english we have 4-ish Bilabial consonants: [m] as in man, [p] as in pan, [b] as in ban and [w] is in water 2. Ladiodental. Here the lower lip contacts the upper teeth to form sounds like [f] as in fish and [v] as is van. 3. Dental. Here the tip of the tongue touches the upper teeth. We have 2 sounds here in english: [θ] as in thin, [ð] as in this. 4. Alveolar. Here the obstruction occurs at the alveolar ridge – that boney ridge just behind the upper teeth. We have a truck load of sounds here in english, namely: [n], [t], [d], [s], [z], [r] and [l] as in nail, town, dog, sun, zoo, run and laugh. Oh, and also there's also the rolled r. Which I cannot do, Lucky, this guy can... 5. Post, or Palato-alveolar. So, this is almost the same as alveolar except the tongue moves back about a centimeter in the mouth. In english we have two sounds here: [ʃ] as in shine and [ʒ] as in vision. 6. Retroflex. We have no retroflex consonants in english. They are formed by curling the tongue back into the mouth and touching the roof of the mouth in the general post alveolar area. They sound a little like this: [ʈ], [ɖ]. As in the Hindi word for island: “tapu”. And the Swedish word for north: “nord”. Apologies speakers of Hindi and Swedish. I did my best. Moving on... 7. Palatal. Palatal consonants are where the body of the tongue is raised to the hard palate. In english we find only one sound here: [j] as in yes. 8. Velar. Here the obstruction occurs when the back of the tongue touches the soft palate at the back of the mouth. Again, in english we have two sounds here: [k] as in king and [g] as in garden. 9. Uvular. Here the back of the tongue touches the uvula – that dangly bit at the back of you're mouth. English does not have an uvular consonants but they are widespread through african, middle eastern and native american languages, amongst others. Closer to home, french features a uvular trill [R] as in “rendez vous”. 10. Pharyngeal. Here's where things start to get a bit weird. Pharyngeal consonants are articulated with the root of the tongue against the pharynx. Don't ask! Pharyngeals are found primarily in three areas of the world: North Africa and the Middle East, in the Caucasus and in British Colombia. Again I can't produce these sounds but luckily my linguistically-inclined-stick-figure friend is here to help... 11. Epi-glottal. As hard as pharyngeals are to pronounce, epiglottals are much, much worse. Epiglottal consonants are articulated using the aryepiglottic folds against the epiglottis. If that's to much to get your head around, think of a vocal growl type sound a la Louis Armstrong and you're kind of on the right track. Epi-glottals don't feature all that often in human language and they are primarily known from the Semetic languages of the Middle east. Again, I hand you over to stick figure dude... And finally. 12. Glottal. These are articulated using the glottis. Thankfully stickman won't be required here as english has two glottal sounds: [h] as in home and the glottal stop as in the little catch of air in the throat between “uh” and “oh” in “uh-oh”. Now, this is the main consonant chart in the International Phonetic alphabet or IPA for short. For now, all we need to know is that the columns are organized by place of articulation. The active articulator can go on the very top i.e lips, tip, body and back of the tongue, and glottis. And below are the 12-ish places of articulation. Now, its worth noting that this list of 12 places of articulation is far from exhaustive. I'm looking at you lingolabial trill...but that's another story, for another day. Stay tuned... Good morning Interweb. First up, apologies for this video being a week late. To make up for this, hopefully, I'll be releasing a new video within the next couple of days. And if you absolutely cannot wait until then for more Artifexian content, click the yellow box, to the side, to take you to the Artifexian Podcast. There's a new episode out; two hours on nothing but language. Thank you all so much for watching. Edgar out!

Overview

The human voice produces sounds in the following manner:[4][page needed][5][page needed]

  1. Air pressure from the lungs creates a steady flow of air through the trachea (windpipe), larynx (voice box) and pharynx (back of the throat). Therefore, the air moves out of the lungs through a coordinated action of the diaphragm, abdominal muscles, chest muscles and rib cage.
  2. The vocal folds in the larynx vibrate, creating fluctuations in air pressure, known as sound waves.
  3. Resonances in the vocal tract modify these waves according to the position and shape of the lips, jaw, tongue, soft palate, and other speech organs, creating formant regions and so different qualities of sonorant (voiced) sound.
  4. Mouth radiates the sound waves into the environment.
  5. Nasal cavity adds resonance to some sounds such as [m] and [n] to give nasal quality of the so-called nasal consonants.

The larynx

The larynx or voice box is a cylindrical framework of cartilage that serves to anchor the vocal folds. When the muscles of the vocal folds contract, the airflow from the lungs is impeded until the vocal folds are forced apart again by the increasing air pressure from the lungs. The process continues in a periodic cycle that is felt as a vibration (buzzing). In singing, the vibration frequency of the vocal folds determines the pitch of the sound produced. Voiced phonemes such as the pure vowels are, by definition, distinguished by the buzzing sound of this periodic oscillation of the vocal cords.

The lips of the mouth can be used in a similar way to create a similar sound, as any toddler or trumpeter can demonstrate. A rubber balloon, inflated but not tied off and stretched tightly across the neck produces a squeak or buzz, depending on the tension across the neck and the level of pressure inside the balloon. Similar actions with similar results occur when the vocal cords are contracted or relaxed across the larynx.

Active articulators

The active articulators are movable parts of the vocal apparatus that impede or direct the airstream, typically some part of the tongue or lips.[3]: 4  There are five major parts of the vocal tract that move: the lips, the flexible front of the tongue, the body of the tongue, the root of the tongue together with the epiglottis, and the glottis. They are discrete in that they can act independently of each other, and two or more may work together in what is called coarticulation.[1]: 10-11 

The five main active parts can be further divided, as many languages contrast sounds produced within the same major part of the vocal apparatus. The following areas are known to be contrastive:[1]: 10-15 

In bilabial consonants, both lips move so the articulatory gesture brings the lips together, but by convention, the lower lip is said to be active and the upper lip passive. Similarly, in linguolabial consonants the tongue contacts the upper lip with the upper lip actively moving down to meet the tongue; nonetheless, the tongue is conventionally said to be active and the lip passive if for no other reason than that the parts of the mouth below the vocal tract are typically active, and those above the vocal tract are typically passive.

In dorsal gestures, different parts of the body of the tongue contact different parts of the roof of the mouth, but it cannot be independently controlled so they are all subsumed under the term dorsal. That is unlike coronal gestures involving the front of the tongue, which is more flexible.

The epiglottis may be active, contacting the pharynx, or passive, being contacted by the aryepiglottal folds. Distinctions made in these laryngeal areas are very difficult to observe and are the subject of ongoing investigation, and several still-unidentified combinations are thought possible.

The glottis acts upon itself. There is a sometimes fuzzy line between glottal, aryepiglottal, and epiglottal consonants and phonation, which uses these same areas.

Passive articulators

The passive are the more stationary parts of the vocal tract that the active articulator touches or gets close to; they can be anywhere from the lips, upper teeth, gums, or roof of the mouth to the back of the throat.[3]: 4  Although it is a continuum, there are several contrastive areas so languages may distinguish consonants by articulating them in different areas, but few languages contrast two sounds within the same area unless there is some other feature which contrasts as well. The following areas are contrastive:

The regions are not strictly separated. For instance, in some sounds in many languages, the surface of the tongue contacts a relatively large area from the back of the upper teeth to the alveolar ridge, which is common enough to have received its own name, denti-alveolar. Likewise, the alveolar and post-alveolar regions merge into each other, as do the hard and soft palate, the soft palate and the uvula, and all adjacent regions. Terms like pre-velar (intermediate between palatal and velar), post-velar (between velar and uvular), and upper vs. lower pharyngeal may be used to specify more precisely where an articulation takes place. However, although a language may contrast pre-velar and post-velar sounds, it does not also contrast them with palatal and uvular sounds (of the same type of consonant) so contrasts are limited to the number above, if not always their exact location.

Table of gestures and passive articulators and resulting places of articulation

The following table shows the possible combinations of active and passive articulators.

The possible locations for sibilants as well as non-sibilants to occur are indicated in dashed red. For sibilants, there are additional complications involving tongue shape; see the article on sibilants for a chart of possible articulations.

Front/back → Front Back
Major class → Labial Coronal "Guttural"
Acute/grave
Active articulator → Lower lip
(Labial)
Tongue blade
(Laminal)
Tongue tip
(Apical)
Underside of tongue
(Subapical)
Tongue body
(Dorsal)
Tongue root
(Radical)
Larynx
(Laryngeal)
Passive articulator
Grave Upper lip bilabial linguolabial
Upper teeth labiodental
Acute Upper teeth interdental dental
Upper teeth/alveolar ridge denti-alveolar
Alveolar ridge laminal alveolar apico-alveolar
Back of alveolar ridge
(postalveolar)
palato-alveolar apical retroflex alveolo-palatal
Hard palate (front) retroflex palatal
Grave Soft palate subapical velar velar
Uvula uvular
Pharynx pharyngeal epiglotto-pharyngeal
Epiglottis (ary-)epiglottal
Glottis glottal

A precise vocabulary of compounding the two places of articulation is sometimes seen. However, it is usually reduced to the passive articulation, which is generally sufficient. Thus dorsal–palatal, dorsal–velar, and dorsal–uvular are usually just called "palatal", "velar", and "uvular". If there is ambiguity, additional terms have been invented, so subapical–palatal is more commonly called "retroflex".

NOTE: Additional shades of passive articulation are sometimes specified using pre- or post-, for example prepalatal (near the border between the postalveolar region and the hard palate; prevelar (at the back of the hard palate, also post-palatal or even medio-palatal for the middle of the hard palate); or postvelar (near the border of the soft palate and the uvula). They can be useful in the precise description of sounds that are articulated somewhat farther forward or back than a prototypical consonant; for this purpose, the "fronted" and "retracted" IPA diacritics can be used. However, no additional shade is needed to phonemically distinguish two consonants in a single language.[a]

Homorganic consonants

Consonants that have the same place of articulation, such as the alveolar sounds /n, t, d, s, z, l/ in English, are said to be homorganic. Similarly, labial /p, b, m/ and velar /k, ɡ, ŋ/ are homorganic. A homorganic nasal rule, an instance of assimilation, operates in many languages, where a nasal consonant must be homorganic with a following stop. We see this with English intolerable but implausible; another example is found in Yoruba, where the present tense of ba "hide" is mba "is hiding", while the present of sun "sleep" is nsun "is sleeping".

Central and lateral articulation

The tongue contacts the mouth with a surface that has two dimensions: length and width. So far, only points of articulation along its length have been considered. However, articulation varies along its width as well. When the airstream is directed down the center of the tongue, the consonant is said to be central. If, however, it is deflected off to one side, escaping between the side of the tongue and the side teeth, it is said to be lateral. Nonetheless, for simplicity's sake the place of articulation is assumed to be the point along the length of the tongue, and the consonant may in addition be said to be central or lateral. That is, a consonant may be lateral alveolar, like English /l/ (the tongue contacts the alveolar ridge, but allows air to flow off to the side), or lateral palatal, like Castilian Spanish ll /ʎ/. Some Indigenous Australian languages contrast dental, alveolar, retroflex, and palatal laterals, and many Native American languages have lateral fricatives and affricates as well.

Coarticulation

Some languages have consonants with two simultaneous places of articulation, which is called coarticulation. When these are doubly articulated, the articulators must be independently movable, and therefore there may be only one each from the major categories labial, coronal, dorsal and pharyngeal.

The only common doubly articulated consonants are labial–velar stops like [k͡p], [ɡ͡b] and less commonly [ŋ͡m], which are found throughout Western Africa and Central Africa. Other combinations are rare but include labial–(post)alveolar stops [t͡p d͡b n͡m], found as distinct consonants only in a single language in New Guinea, and a uvular–epiglottal stop, [q͡ʡ], found in Somali.

More commonly, coarticulation involves secondary articulation of an approximantic nature. Then, both articulations can be similar such as labialized labial [mʷ] or palatalized velar [kʲ]. That is the case of English [w], which is a velar consonant with secondary labial articulation.

Common coarticulations include these:

  • Labialization, rounding the lips while producing the obstruction, as in [kʷ] and English [w].
  • Palatalization, raising the body of the tongue toward the hard palate while producing the obstruction, as in Russian [tʲ] and [ɕ].
  • Velarization, raising the back of the tongue toward the soft palate (velum), as in the English dark el, [lˠ] (also transcribed [ɫ]).
  • Pharyngealization, constriction of the throat (pharynx), such as Arabic "emphatic" [tˤ].

See also

Notes

  1. ^ Occasionally claims to the contrary are met. For example, some dialects of Malayalam are said to distinguish palatal, prevelar and velar consonants. In reality, the dialects distinguish palato-alveolar (palatalized postalveolar), palatal and velar consonants; the claim is based on the imprecise usage of "palatal" to mean "palato-alveolar".

References

  1. ^ a b c d Ladefoged, Peter (1996). The sounds of the world's languages. Ian Maddieson. Oxford, OX, UK: Blackwell Publishers. ISBN 0-631-19814-8. OCLC 31867443.
  2. ^ Zsiga, Elizabeth C. (2013). The sounds of language: an introduction to phonetics and phonology. Chichester: Wiley-Blackwell. ISBN 978-1-4051-9103-6. OCLC 799024997.
  3. ^ a b c Bickford, Anita C. (2006). Articulatory phonetics: tools for analyzing the world's languages. Rick Floyd (4 ed.). Dallas, Tex.: SIL International. ISBN 978-1-55671-165-7. OCLC 76160059.
  4. ^ Titze, Ingo R. (1994). Principles of voice production. Englewood Cliffs, N.J.: Prentice Hall. ISBN 0-13-717893-X. OCLC 27897589.
  5. ^ Titze, Ingo R. (January 2008). "The Human Instrument". Scientific American. 298 (1): 94–101. Bibcode:2008SciAm.298a..94T. doi:10.1038/scientificamerican0108-94. ISSN 0036-8733. PMID 18225701.

External links

This page was last edited on 22 March 2024, at 17:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.