To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Vernier thruster

From Wikipedia, the free encyclopedia

A 1960s Mercury-Atlas vernier thruster
Vernier thrusters on the side of an Atlas missile can be seen emitting diagonal flames.

A vernier thruster is a rocket engine used on a spacecraft or launch vehicle for fine adjustments to the attitude or velocity. Depending on the design of a craft's maneuvering and stability systems, it may simply be a smaller thruster complementing the main propulsion system,[1] or it may complement larger attitude control thrusters,[2] or may be a part of the reaction control system. The name is derived from vernier calipers (named after Pierre Vernier) which have a primary scale for gross measurements, and a secondary scale for fine measurements.

Vernier thrusters are used when a heavy spacecraft requires a wide range of different thrust levels for attitude or velocity control, as for maneuvering during docking with other spacecraft.

On space vehicles with two sizes of attitude control thrusters, the main ACS (Attitude Control System) thrusters are used for larger movements, while the verniers are reserved for smaller adjustments.

Due to their weight and the extra plumbing required for their operation, vernier rockets are seldom used in new designs.[1] Instead, as modern rocket engines gained better control, larger thrusters could also be fired for very short pulses, resulting in the same change of momentum as a longer thrust from a smaller thruster.

Vernier thrusters are used in rockets such as the R-7 for vehicle maneuvering because the main engine is fixed in place. For earlier versions of the Atlas rocket family (prior to the Atlas III), in addition to maneuvering, the verniers were used for roll control, although the booster engines could also perform this function. After main engine cutoff, the verniers would execute solo mode and fire for several seconds to make fine adjustments to the vehicle attitude. The Thor/Delta family also used verniers for roll control but were mounted on the base of the thrust section flanking the main engine.

YouTube Encyclopedic

  • 1/3
    Views:
    337
    627
    3 937
  • Atlas LR 101 Vernier Thruster test
  • Force Plate for Rocket Thrust Measurements using Vernier Dual Range Force Sensors
  • Rocket Engine Failure and Thrust Vector Control

Transcription

Examples

The first- and second-stage engines of a Soyuz, showing the four RD-107 modules with twin vernier nozzles each, and the central RD-108 with four steerable vernier thrusters

See also

References

  1. ^ a b "Rocket Control: Examples of Controls". NASA's Glenn Research Center. Archived from the original on March 7, 2011. Retrieved December 30, 2011.
  2. ^ a b "Reaction Control Systems". NASA Kennedy Spaceflight Center. Retrieved 2011-10-03. The flight crew can select primary or vernier RCS thrusters for attitude control in orbit. Normally, the vernier thrusters are selected for on-orbit attitude hold. ... The forward RCS had 14 primaries and two vernier engines. The aft RCS had 12 primary and two vernier engines in each pod. The primary RCS engines provided 870 pounds of vacuum thrust each, and the verniers provided 24 pounds of vacuum thrust each. The oxidizer-to-fuel ratio for each engine is 1.6-to-1. The nominal chamber pressure of the primary thrusters was 152 psia. For each vernier, it was 110 psi.
  3. ^ "LR-101 VERNIER ENGINE". heroicrelics.org. Retrieved 24 June 2017.
  4. ^ Bergin, Chris (19 February 2010). "STS-130 prepares for undocking – MMOD impact on hatch cleared". NASAspaceflight.com. Retrieved 20 February 2010.


This page was last edited on 10 February 2024, at 07:38
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.