To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Venom-induced consumption coagulopathy

From Wikipedia, the free encyclopedia

Venom-induced consumption coagulopathy
Other namesVICC

Venom-induced consumption coagulopathy (VICC) is a medical condition caused by the effects of some snake and caterpillar venoms on the blood.[1] Important coagulation factors are activated by the specific serine proteases in the venom and as they become exhausted, coagulopathy develops. Symptoms are consistent with uncontrolled bleeding. Diagnosis is made using blood tests that assess clotting ability along with recent history of envenomation. Treatment generally involves pressure dressing, confirmatory blood testing, and antivenom administration.

Signs and symptoms

Symptoms are similar to those seen in other consumptive coagulopathies. These include obvious bleeding from the nose, gums, intravenous lines, or puncture sites. More serious symptoms such as vomiting blood, intestinal bleeding, and hemorrhage of internal organs may also be seen.[2]

Pathophysiology

Venom-induced coagulopathy is caused by over-activation of the body's natural clotting system. This decreases clotting factor availability, thus impairing hemostasis. The exact mechanism by which this is accomplished varies greatly venom to venom.[3] Some venoms cause something akin to disseminated intravascular coagulation, while others lack the microthrombi characteristic in this disorder.[4] Procoagulant metalloproteinases in the venom promote a consumption coagulopathy by activating prothrombin, factor V, factor X or thrombin-like enzymes (fibrinogenases).[5] Venom induced coagulopathy may also be accompanied by a thrombotic microangiopathy consisting of thrombocytopenia (low platelets), microangiopathic hemolytic anemia and acute kidney injury.[5]

Diagnosis

Diagnosis is established using various laboratory tests designed to test the function of the clotting system and other blood components. These tests include a complete blood count, prothrombin time with international normalized ratio, activated partial thromboplastin time, serum direct fibrinogen, and D-dimer. Abnormal values of these tests in combination with recent history of snakebite suggest VICC. The anticoagulation effects of snake venom can last for up to two weeks in some species without the administration of antivenom and should thus be considered as the relevant time course when distinguishing symptom causes.[6]

Treatment

Treatment revolves around rapid identification and prompt administration of antivenom. General principles of treatment also include application of pressure dressing, baseline blood tests, swabbing of bite site for venom, urinalysis, and follow-up serial bloodwork to monitor disease progression. However, there is some controversy as some venoms may work too quickly for antivenom to be of any use.[7]

References

  1. ^ Carrijo-Carvalho, Linda Christian; Chudzinski-Tavassi, Ana Marisa (2007). "The venom of the Lonomia caterpillar: an overview". Toxicon. 49 (6): 741–757. doi:10.1016/j.toxicon.2006.11.033. ISSN 0041-0101. PMID 17320134.
  2. ^ White, Julian (2021). Snakebites worldwide: Clinical manifestations and diagnosis. UpToDate: Wolters Kluwer.
  3. ^ Park, Eun Jung; Choi, Sangchun; Kim, Hyuk-Hoon; Jung, Yoon Seok (2020). "Novel Treatment Strategy for Patients with Venom-Induced Consumptive Coagulopathy from a Pit Viper Bite". Toxins. 12 (5): 295. doi:10.3390/toxins12050295. PMC 7290867. PMID 32380672.
  4. ^ Isbister, Geoffrey K. (2010). "Snakebite doesn't cause disseminated intravascular coagulation: coagulopathy and thrombotic microangiopathy in snake envenoming". Seminars in Thrombosis and Hemostasis. 36 (4): 444–451. doi:10.1055/s-0030-1254053. ISSN 1098-9064. PMID 20614396.
  5. ^ a b Seifert, Steven A.; Armitage, James O.; Sanchez, Elda E. (6 January 2022). "Snake Envenomation". New England Journal of Medicine. 386 (1): 68–78. doi:10.1056/NEJMra2105228. PMC 9854269.
  6. ^ White, Julian (2021). Danzl; Traub (eds.). Snakebites worldwide: Management. UpToDate: Wolters Kluwer.
  7. ^ Maduwage, Kalana; Buckley, Nick A; de Silva, H Janaka; Lalloo, David G; Isbister, Geoffrey K (2015-06-09). "Snake antivenom for snake venom induced consumption coagulopathy". Cochrane Database of Systematic Reviews (6): CD011428. doi:10.1002/14651858.cd011428.pub2. hdl:1959.13/1342074. ISSN 1465-1858. PMID 26058967.
This page was last edited on 6 November 2023, at 23:16
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.