To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Velocity triangle

From Wikipedia, the free encyclopedia

In turbomachinery, a velocity triangle or a velocity diagram is a triangle representing the various components of velocities of the working fluid in a turbomachine. Velocity triangles may be drawn for both the inlet and outlet sections of any turbomachine. The vector nature of velocity is utilized in the triangles, and the most basic form of a velocity triangle consists of the tangential velocity, the absolute velocity and the relative velocity of the fluid making up three sides of the triangle.

YouTube Encyclopedic

  • 1/3
    Views:
    305 324
    13 500
    65 032
  • Turbomachinery | Fundamentals
  • Velocity triangle of centrifugal pump
  • velocity triangles for turbines | hydraulic machine fm | all ae&je exam/fluid mechanics by rahul sir

Transcription

Components

An example of a velocity triangle drawn for the inlet of a turbomachine. The "1" subscript denotes the high pressure side (inlet in case of turbines and outlet in case of pumps/compressors).

A general velocity triangle consists of the following vectors:[1][2]

  • V : Absolute velocity of the fluid.
  • U : Blade linear velocity.
  • Vr: Relative velocity of the fluid after contact with rotor.
  • Vw: Tangential component of V (absolute velocity), called Whirl velocity.
  • Vf: Flow velocity (axial component in case of axial machines, radial component in case of radial machines).

The following angles are encountered during the analysis:

  • α: Absolute angle is an angle made by V with the plane of the machine (usually the nozzle angle or the guide blade angle) i.e. angle made by absolute velocity V and the direction of blade rotation U
  • β: Relative angle is an angle made by relative velocity and direction of blade rotation.

References

  1. ^ Venkanna, B.K. (2011). Fundamentals of Turbomachinery. Prentice Hall India. ISBN 978-81-203-3775-6.
  2. ^ Govinde Gowda, M.S. (2011). A Text book of Turbomachines. Davangere: MM Publishers.
This page was last edited on 24 March 2024, at 05:52
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.