To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Unordered pair

From Wikipedia, the free encyclopedia

In mathematics, an unordered pair or pair set is a set of the form {ab}, i.e. a set having two elements a and b with no particular relation between them, where {ab} = {ba}. In contrast, an ordered pair (ab) has a as its first element and b as its second element, which means (ab) ≠ (ba).

While the two elements of an ordered pair (ab) need not be distinct, modern authors only call {ab} an unordered pair if a ≠ b.[1][2][3][4] But for a few authors a singleton is also considered an unordered pair, although today, most would say that {aa} is a multiset. It is typical to use the term unordered pair even in the situation where the elements a and b could be equal, as long as this equality has not yet been established.

A set with precisely two elements is also called a 2-set or (rarely) a binary set.

An unordered pair is a finite set; its cardinality (number of elements) is 2 or (if the two elements are not distinct) 1.

In axiomatic set theory, the existence of unordered pairs is required by an axiom, the axiom of pairing.

More generally, an unordered n-tuple is a set of the form {a1a2,... an}.[5][6][7]

YouTube Encyclopedic

  • 1/3
    2 542
  • Introduction to Combinations (Unordered Selections)
  • Lecture: Unordered sampling without replacement
  • Ordered pair Meaning



  1. ^ Düntsch, Ivo; Gediga, Günther (2000), Sets, Relations, Functions, Primers Series, Methodos, ISBN 978-1-903280-00-3.
  2. ^ Fraenkel, Adolf (1928), Einleitung in die Mengenlehre, Berlin, New York: Springer-Verlag
  3. ^ Roitman, Judith (1990), Introduction to modern set theory, New York: John Wiley & Sons, ISBN 978-0-471-63519-2.
  4. ^ Schimmerling, Ernest (2008), Undergraduate set theory
  5. ^ Hrbacek, Karel; Jech, Thomas (1999), Introduction to set theory (3rd ed.), New York: Dekker, ISBN 978-0-8247-7915-3.
  6. ^ Rubin, Jean E. (1967), Set theory for the mathematician, Holden-Day
  7. ^ Takeuti, Gaisi; Zaring, Wilson M. (1971), Introduction to axiomatic set theory, Graduate Texts in Mathematics, Berlin, New York: Springer-Verlag


This page was last edited on 19 April 2021, at 05:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.