To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Universal embedding theorem

From Wikipedia, the free encyclopedia

The universal embedding theorem, or Krasner–Kaloujnine universal embedding theorem, is a theorem from the mathematical discipline of group theory first published in 1951 by Marc Krasner and Lev Kaluznin.[1] The theorem states that any group extension of a group H by a group A is isomorphic to a subgroup of the regular wreath product A Wr H. The theorem is named for the fact that the group A Wr H is said to be universal with respect to all extensions of H by A.

Statement

Let H and A be groups, let K = AH be the set of all functions from H to A, and consider the action of H on itself by right multiplication. This action extends naturally to an action of H on K defined by where and g and h are both in H. This is an automorphism of K, so we can define the semidirect product K ⋊ H called the regular wreath product, and denoted A Wr H or The group K = AH (which is isomorphic to ) is called the base group of the wreath product.

The Krasner–Kaloujnine universal embedding theorem states that if G has a normal subgroup A and H = G/A, then there is an injective homomorphism of groups such that A maps surjectively onto [2] This is equivalent to the wreath product A Wr H having a subgroup isomorphic to G, where G is any extension of H by A.

Proof

This proof comes from Dixon–Mortimer.[3]

Define a homomorphism whose kernel is A. Choose a set of (right) coset representatives of A in G, where Then for all x in G, For each x in G, we define a function fxH → A such that Then the embedding is given by

We now prove that this is a homomorphism. If x and y are in G, then Now so for all u in H,

so fx fy = fxy. Hence is a homomorphism as required.

The homomorphism is injective. If then both fx(u) = fy(u) (for all u) and Then but we can cancel tu and from both sides, so x = y, hence is injective. Finally, precisely when in other words when (as ).

Generalizations and related results

  • The Krohn–Rhodes theorem is a statement similar to the universal embedding theorem, but for semigroups. A semigroup S is a divisor of a semigroup T if it is the image of a subsemigroup of T under a homomorphism. The theorem states that every finite semigroup S is a divisor of a finite alternating wreath product of finite simple groups (each of which is a divisor of S) and finite aperiodic semigroups.
  • An alternate version of the theorem exists which requires only a group G and a subgroup A (not necessarily normal).[4] In this case, G is isomorphic to a subgroup of the regular wreath product A Wr (G/Core(A)).

References

Bibliography

  • Dixon, John; Mortimer, Brian (1996). Permutation Groups. Springer. ISBN 978-0387945996.
  • Kaloujnine, Lev; Krasner, Marc (1951a). "Produit complet des groupes de permutations et le problème d'extension de groupes II". Acta Sci. Math. Szeged. 14: 39–66.
  • Kaloujnine, Lev; Krasner, Marc (1951b). "Produit complet des groupes de permutations et le problème d'extension de groupes III". Acta Sci. Math. Szeged. 14: 69–82.
  • Praeger, Cheryl; Schneider, Csaba (2018). Permutation groups and Cartesian Decompositions. Cambridge University Press. ISBN 978-0521675062.
This page was last edited on 19 February 2021, at 18:05
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.