To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Ultrafast X-ray

From Wikipedia, the free encyclopedia

Ultrafast X-rays or ultrashort X-ray pulses are femtosecond x-ray pulses with wavelengths occurring at interatomic distances. This beam uses the X-ray's inherent abilities to interact at the level of atomic nuclei and core electrons. This ability combined with the shorter pulses at 30 femtosecond could capture the change in position of atoms, or molecules during phase transitions, chemical reactions, and other transient processes in physics, chemistry, and biology.[1][2]

Fundamental transitions and processes

Ultrafast X-ray diffraction (time-resolved X-ray diffraction) can surpass ultrashortpulse visible techniques, which are limited to detecting structures on the level of valence and free electrons. Ultrashort pulse X-ray techniques are able to resolve atomic scales, where dynamic structural changes and reactions occur in the interior of a material.[3][4] [5] [6]


See also

References

  1. ^ Yarris, Lynn (August 27, 1993). "LBL Beam Test Facility to Yield Ultrafast X-Rays". Ultrafast X-ray diffraction. Lawrence Berkeley National Laboratory. Retrieved 2011-07-08.
  2. ^ Corlett, John (August 6, 2010). "Overview of X-Ray FEL R&D at LBNL" (PDF). Lawrence Berkeley National Laboratory. pp. 3, 4, 5. Retrieved 2011-07-08.
  3. ^ Siders, C. W.; Cavalleri, A; Sokolowski-Tinten, K; Tóth, C; Guo, T; Kammler, M; Horn Von Hoegen, M; Wilson, KR; et al. (1999). "Detection of Nonthermal Melting by Ultrafast X-ray Diffraction" (PDF). Science. 286 (5443): 1340–1342. doi:10.1126/science.286.5443.1340. PMID 10558985. Free PDF download.
  4. ^ Rose-Petruck, Christoph; Jimenez, Ralph; Guo, Ting; Cavalleri, Andrea; Siders, Craig W.; Rksi, Ferenc; Squier, Jeff A.; Walker, Barry C.; et al. (March 25, 1999). "Picosecond–milliångström lattice dynamics measured by ultrafast X-ray diffraction" (PDF). Nature. 398 (6725): 310–312. Bibcode:1999Natur.398..310R. doi:10.1038/18631. S2CID 4399550. Free PDF download.
  5. ^ Zamponi, F.; Ansari, Z.; Woerner, M.; Elsaesser, T. (2010). "Femtosecond powder diffraction with a laser-driven hard X-ray source" (PDF). Optics Express. 18 (2): 947–61. Bibcode:2010OExpr..18..947Z. doi:10.1364/OE.18.000947. PMID 20173917. Free PDF download.
  6. ^ Natan, A. (2023). "Real-space inversion and super-resolution of ultrafast scattering". Physical Review A. 107 (2): 023105. arXiv:2107.05576. doi:10.1103/PhysRevA.107.023105. Free PDF download.

Further reading

Rose-Petruck, Christoph; et al. (March 25, 1999). "Figure 1". Nature. 398 (6725): 310–312. Bibcode:1999Natur.398..310R. doi:10.1038/18631. S2CID 4399550.

External links

This page was last edited on 18 August 2023, at 09:41
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.