To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Parameters Probability density function ${\displaystyle a:~a\in (-\infty ,\infty )}$${\displaystyle b:~b\in (a,\infty )}$or${\displaystyle \alpha :~\alpha \in (0,\infty )}$${\displaystyle \beta :~\beta \in (-\infty ,\infty ),}$ ${\displaystyle x\in [a,b]\!}$ ${\displaystyle \alpha \left(x-\beta \right)^{2}}$ ${\displaystyle {\alpha \over 3}\left((x-\beta )^{3}+(\beta -a)^{3}\right)}$ ${\displaystyle {a+b \over 2}}$ ${\displaystyle {a+b \over 2}}$ ${\displaystyle a{\text{ and }}b}$ ${\displaystyle {3 \over 20}(b-a)^{2}}$ ${\displaystyle 0}$ ${\displaystyle {3 \over 112}(b-a)^{4}}$ TBD See text See text

In probability theory and statistics, the U-quadratic distribution is a continuous probability distribution defined by a unique convex quadratic function with lower limit a and upper limit b.

${\displaystyle f(x|a,b,\alpha ,\beta )=\alpha \left(x-\beta \right)^{2},\quad {\text{for }}x\in [a,b].}$

## Parameter relations

This distribution has effectively only two parameters a, b, as the other two are explicit functions of the support defined by the former two parameters:

${\displaystyle \beta ={b+a \over 2}}$

(gravitational balance center, offset), and

${\displaystyle \alpha ={12 \over \left(b-a\right)^{3}}}$

(vertical scale).

## Related distributions

One can introduce a vertically inverted (${\displaystyle \cap }$)-quadratic distribution in analogous fashion.

## Applications

This distribution is a useful model for symmetric bimodal processes. Other continuous distributions allow more flexibility, in terms of relaxing the symmetry and the quadratic shape of the density function, which are enforced in the U-quadratic distribution – e.g., beta distribution and gamma distribution.

## Moment generating function

${\displaystyle M_{X}(t)={-3\left(e^{at}(4+(a^{2}+2a(-2+b)+b^{2})t)-e^{bt}(4+(-4b+(a+b)^{2})t)\right) \over (a-b)^{3}t^{2}}}$

## Characteristic function

${\displaystyle \phi _{X}(t)={3i\left(e^{iate^{ibt}}(4i-(-4b+(a+b)^{2})t)\right) \over (a-b)^{3}t^{2}}}$