To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Truncated hexaoctagonal tiling

From Wikipedia, the free encyclopedia

Truncated hexaoctagonal tiling
Truncated hexaoctagonal tiling

Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.12.16
Schläfli symbol tr{8,6} or
Wythoff symbol 2 8 6 |
Coxeter diagram or
Symmetry group [8,6], (*862)
Dual Order-6-8 kisrhombille tiling
Properties Vertex-transitive

In geometry, the truncated hexaoctagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one dodecagon, and one hexakaidecagon on each vertex. It has Schläfli symbol of tr{8,6}.

Dual tiling

The dual tiling is called an order-6-8 kisrhombille tiling, made as a complete bisection of the order-6 octagonal tiling, here with triangles are shown with alternating colors. This tiling represents the fundamental triangular domains of [8,6] (*862) symmetry.

Symmetry

Truncated hexaoctagonal tiling with mirror lines

There are six reflective subgroup kaleidoscopic constructed from [8,6] by removing one or two of three mirrors. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The subgroup index-8 group, [1+,8,1+,6,1+] (4343) is the commutator subgroup of [8,6].

A radical subgroup is constructed as [8,6*], index 12, as [8,6+], (6*4) with gyration points removed, becomes (*444444), and another [8*,6], index 16 as [8+,6], (8*3) with gyration points removed as (*33333333).


Small index subgroups of [8,6] (*862)
Index 1 2 4
Diagram
Coxeter [8,6]
=
[1+,8,6]
=
[8,6,1+]
= =
[8,1+,6]
=
[1+,8,6,1+]
=
[8+,6+]
Orbifold *862 *664 *883 *4232 *4343 43×
Semidirect subgroups
Diagram
Coxeter [8,6+]
[8+,6]
[(8,6,2+)]
[8,1+,6,1+]
= =
= =
[1+,8,1+,6]
= =
= =
Orbifold 6*4 8*3 2*43 3*44 4*33
Direct subgroups
Index 2 4 8
Diagram
Coxeter [8,6]+
=
[8,6+]+
=
[8+,6]+
=
[8,1+,6]+
=
[8+,6+]+ = [1+,8,1+,6,1+]
= = =
Orbifold 862 664 883 4232 4343
Radical subgroups
Index 12 24 16 32
Diagram
Coxeter [8,6*]
[8*,6]
[8,6*]+
[8*,6]+
Orbifold *444444 *33333333 444444 33333333

Related polyhedra and tilings

From a Wythoff construction there are fourteen hyperbolic uniform tilings that can be based from the regular order-6 octagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 7 forms with full [8,6] symmetry, and 7 with subsymmetry.

Uniform octagonal/hexagonal tilings
Symmetry: [8,6], (*862)
{8,6} t{8,6}
r{8,6} 2t{8,6}=t{6,8} 2r{8,6}={6,8} rr{8,6} tr{8,6}
Uniform duals
V86 V6.16.16 V(6.8)2 V8.12.12 V68 V4.6.4.8 V4.12.16
Alternations
[1+,8,6]
(*466)
[8+,6]
(8*3)
[8,1+,6]
(*4232)
[8,6+]
(6*4)
[8,6,1+]
(*883)
[(8,6,2+)]
(2*43)
[8,6]+
(862)
h{8,6} s{8,6} hr{8,6} s{6,8} h{6,8} hrr{8,6} sr{8,6}
Alternation duals
V(4.6)6 V3.3.8.3.8.3 V(3.4.4.4)2 V3.4.3.4.3.6 V(3.8)8 V3.45 V3.3.6.3.8

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links

This page was last edited on 12 December 2023, at 21:58
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.