To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Tripodal ligand

From Wikipedia, the free encyclopedia

Motifs for complexation of tri- and tetradentate tripodal ligands

Tripodal ligands are tri- and tetradentate ligands. They are popular in research in the areas of coordination chemistry and homogeneous catalysis. Because the ligands are polydentate, they do not readily dissociate from the metal centre. Many tripodal ligands have C3 symmetry.

Coordination chemistry

In their coordination complexes with an octahedral molecular geometry the tridentate tripod ligands occupy one face, leading to a fixed facial (or fac) geometry. The tetradentate tripodal ligands occupy four contiguous sites, leaving two cis positions available on the octahedral metal center. When bound to four- and five-coordinate metal centres, these ligands impose C3 symmetry, which can lead to uncommon ligand field splitting patterns. Tripodal ligands are often able to coordinately saturate metal ions with lower coordination numbers.

One tripodal ligand of commercial significance is nitrilotriacetate, N(CH2CO2)3 because it is cheaply produced and has a high affinity for divalent metal ions. Other tripodal triamine ligands include tren (N(CH2CH2NH2)3) and cis-1,3,5-triaminocyclohexane.[1] Certain triphosphines such as RC(CH2PPh2)3 are also tripodal. Many kinds of donor groups have been incorporated into the arms of tripodal ligands, including amido (R2N),[2] and N-heterocyclic carbenes.

Structure of [Ni(TACH)(H2O)3]2+ (color code: blue = nitrogen, red = oxygen, dark blue = nickel).[3]

References

  1. ^ Aimee J. Gamble; Jason M. Lynam; Robert J. Thatcher; Paul H. Walton; Adrian C. Whitwood (2013). "cis-1,3,5-Triaminocyclohexane as a Facially Capping Ligand for Ruthenium(II)". Inorg. Chem. 52 (8): 4517–4527. doi:10.1021/ic302819j. PMID 23517123.
  2. ^ Verkade, J. G. (1993). "Atranes: New Examples with Unexpected Properties". Acc. Chem. Res. 26 (9): 483. doi:10.1021/ar00033a005.
  3. ^ Schwarzenbach, Gerold; Bürgi, Hans-Beat; Jensen, William P.; Lawrance, Geoffrey A.; Mønsted, Lene; Sargeson, Alan M. (1983). "Acid Cleavage of Nickel(Ii) Complexes Containing cis,cis-1,3,5-Cyclohexanetriamine (TACH), Crystal Structure of [Ni(tach)(H2O)3](NO3)2, and a Correlation Between the Structure and Reactivity of Nickel-Polyamine Complexes". Inorganic Chemistry. 22 (26): 4029–4038. doi:10.1021/ic00168a042.
  4. ^ Saouma, C. T., Peters, J. C. (2011). "M-E and M=E Complexes of Iron and Cobalt that Emphasize Three-Fold Symmetry (E = O, N, NR)". Coord. Chem. Rev. 255 (7–8): 920–937. doi:10.1016/j.ccr.2011.01.009. PMC 3103469. PMID 21625302.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Blackman, A. G. (2008). "Tripodal Tetraamine Ligands Containing Three Pyridine Units: the other polypyridyl ligands". Eur. J. Inorg. Chem. 2008 (17): 2633. doi:10.1002/ejic.200800115.
  6. ^ Parkin, G. (2000). "The Bioinorganic Chemistry of Zinc: Synthetic Analogues of Zinc Enzymes that Feature Tripodal Ligands". Chemical Communications (20): 1971–1985. doi:10.1039/B004816J.
This page was last edited on 20 January 2024, at 10:47
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.