To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Trigatron CV100, with loose-knit "sock" to contain any explosion
Trigatron CV100, with loose-knit "sock" to contain any explosion

A trigatron is a type of triggerable spark gap switch designed for high current and high voltage, (usually 10–100 kV and 20–100 kA, though devices in the mega-ampere range exist as well). It has very simple construction and in many cases is the lowest cost high energy switching option. It may operate in open air, it may be sealed, or it may be filled with a dielectric gas other than air or a liquid dielectric. The dielectric gas may be pressurized, or a liquid dielectric (e.g. mineral oil) may be substituted to further extend the operating voltage. Trigatrons may be rated for repeated use (over 10,000 switching cycles), or they may be single-shot, destroyed in a single use.

A trigatron has three electrodes. The heavy main electrodes are for the high current switching path, and a smaller third electrode serves as the trigger. During normal operation, the voltage between the main electrodes is somewhat lower than the breakdown voltage corresponding to their distance and the dielectric between them (usually air, argon-oxygen, nitrogen, hydrogen, or sulfur hexafluoride). To switch the device, a high-voltage pulse is delivered to the triggering electrode. This ionizes the medium between it and one of the main electrodes, creating a spark which shortens the thickness of non-ionized medium between the electrodes. The triggering spark also generates ultraviolet light and free electrons in the main gap. These lead to the rapid electrical breakdown of the main gap, culminating in a low resistance electric arc between the main electrodes. The arc will continue to conduct until current flow drops sufficiently to extinguish it.

The triggering electrode is most often mounted through a hole in the center of the positive main electrode. The undrilled main electrode is the negative electrode. When switching high currents, the electrodes undergo considerable heat stress, as they are directly involved in the electric arc. This causes the surfaces to undergo gradual vaporization, so some designs incorporate methods to easily adjust the distance between the electrodes or to actually replace the electrodes. The main electrodes are typically fabricated from brass, copper or its alloys, tungsten, or copper–tungsten composite, to achieve longer electrode life.

The trigger pulse is most often delivered by a trigger transformer. Some trigatron units have trigger modules integrated, others use external ones. The trigger transformer secondary can be galvanically isolated from its primary side. Some manufacturers offer trigger modules controlled by an optical fiber, which isolates the control circuitry from the electromagnetic interference effects of the sharp and intense electrical pulses. The trigger pulse from the transformer output is typically a narrow spike of very high voltage, with relatively small energy compared to the energy controlled by the trigatron.

The energy for the trigger pulse is usually derived from a capacitor, which may be charged from the power source of the trigatron's own circuit. In this regard, the entire circuit is very similar to a flashtube based photoflash, where the trigger transformer provides the ionization in the tube and the tube functions simultaneously as the light source and the power switching element for itself. An air-gap flash type, where the flash gap itself contains a trigger electrode and acts as a switch, is a form of a trigatron with the same dual function.

Trigatrons are often enclosed in resin-impregnated loose-knit fabric "socks", to contain fragments if the device explodes due to internal overpressure.

Trigatrons find many uses in pulsed power applications. For example, they were used in early radar modulators to feed the high-power pulses into the magnetrons, for use with slapper detonators, or for triggering a Marx generator.

See also

References

External links

This page was last edited on 25 January 2020, at 15:52
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.