To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In geometry, a triacontagon or 30-gon is a thirty-sided polygon. The sum of any triacontagon's interior angles is 5040 degrees.

YouTube Encyclopedic

  • 1/4
    Views:
    491
    21 196
    355
    926
  • How to pronounce Triacontagon
  • *Cálculo de diagonales desde un vértice en un polígono
  • How to pronounce Chiliagon
  • solidworks pentagon ball

Transcription

Regular triacontagon

The regular triacontagon is a constructible polygon, by an edge-bisection of a regular pentadecagon, and can also be constructed as a truncated pentadecagon, t{15}. A truncated triacontagon, t{30}, is a hexacontagon, {60}.

One interior angle in a regular triacontagon is 168 degrees, meaning that one exterior angle would be 12°. The triacontagon is the largest regular polygon whose interior angle is the sum of the interior angles of smaller polygons: 168° is the sum of the interior angles of the equilateral triangle (60°) and the regular pentagon (108°).

The area of a regular triacontagon is (with t = edge length)[1]

The inradius of a regular triacontagon is

The circumradius of a regular triacontagon is

Construction

Regular triacontagon with given circumcircle. D is the midpoint of AM, DC = DF, and CF, which is the side length of the regular pentagon, is E25E1. Since 1/30 = 1/5 - 1/6, the difference between the arcs subtended by the sides of a regular pentagon and hexagon (E25E1 and E25A) is that of the regular triacontagon, AE1.

As 30 = 2 × 3 × 5, a regular triacontagon is constructible using a compass and straightedge.[2]

Symmetry

The symmetries of a regular triacontagon as shown with colors on edges and vertices. Lines of reflections are blue through vertices, and purple through edges. Gyrations are given as numbers in the center. Vertices are colored by their symmetry positions. Subgroup symmetries are connected by colored lines, index 2, 3, and 5.

The regular triacontagon has Dih30 dihedral symmetry, order 60, represented by 30 lines of reflection. Dih30 has 7 dihedral subgroups: Dih15, (Dih10, Dih5), (Dih6, Dih3), and (Dih2, Dih1). It also has eight more cyclic symmetries as subgroups: (Z30, Z15), (Z10, Z5), (Z6, Z3), and (Z2, Z1), with Zn representing π/n radian rotational symmetry.

John Conway labels these lower symmetries with a letter and order of the symmetry follows the letter.[3] He gives d (diagonal) with mirror lines through vertices, p with mirror lines through edges (perpendicular), i with mirror lines through both vertices and edges, and g for rotational symmetry. a1 labels no symmetry.

These lower symmetries allows degrees of freedoms in defining irregular triacontagons. Only the g30 subgroup has no degrees of freedom but can be seen as directed edges.

Dissection

30-gon with 420 rhombs

Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms.[4] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular triacontagon, m=15, it can be divided into 105: 7 sets of 15 rhombs. This decomposition is based on a Petrie polygon projection of a 15-cube.

Examples

Triacontagram

A triacontagram is a 30-sided star polygon (though the word is extremely rare). There are 3 regular forms given by Schläfli symbols {30/7}, {30/11}, and {30/13}, and 11 compound star figures with the same vertex configuration.

There are also isogonal triacontagrams constructed as deeper truncations of the regular pentadecagon {15} and pentadecagram {15/7}, and inverted pentadecagrams {15/11}, and {15/13}. Other truncations form double coverings: t{15/14}={30/14}=2{15/7}, t{15/8}={30/8}=2{15/4}, t{15/4}={30/4}=2{15/4}, and t{15/2}={30/2}=2{15}.[5]

Petrie polygons

The regular triacontagon is the Petrie polygon for three 8-dimensional polytopes with E8 symmetry, shown in orthogonal projections in the E8 Coxeter plane. It is also the Petrie polygon for two 4-dimensional polytopes, shown in the H4 Coxeter plane.

E8 H4

421

241

142

120-cell

600-cell

The regular triacontagram {30/7} is also the Petrie polygon for the great grand stellated 120-cell and grand 600-cell.

References

  1. ^ Weisstein, Eric W. "Triacontagon". MathWorld.
  2. ^ Constructible Polygon
  3. ^ The Symmetries of Things, Chapter 20
  4. ^ Coxeter, Mathematical recreations and Essays, Thirteenth edition, p.141
  5. ^ The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History, (1994), Metamorphoses of polygons, Branko Grünbaum
This page was last edited on 2 March 2024, at 18:25
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.