To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

A tree k-spanner (or simply k-spanner) of a graph is a spanning subtree of in which the distance between every pair of vertices is at most times their distance in .

Known Results

There are several papers written on the subject of tree spanners. One of these was entitled Tree Spanners[1] written by mathematicians Leizhen Cai and Derek Corneil, which explored theoretical and algorithmic problems associated with tree spanners. Some of the conclusions from that paper are listed below. is always the number of vertices of the graph, and is its number of edges.

  1. A tree 1-spanner, if it exists, is a minimum spanning tree and can be found in time (in terms of complexity) for a weighted graph, where . Furthermore, every tree 1-spanner admissible weighted graph contains a unique minimum spanning tree.
  2. A tree 2-spanner can be constructed in time, and the tree -spanner problem is NP-complete for any fixed integer .
  3. The complexity for finding a minimum tree spanner in a digraph is , where is a functional inverse of the Ackermann function
  4. The minimum 1-spanner of a weighted graph can be found in time.
  5. For any fixed rational number , it is NP-complete to determine whether a weighted graph contains a tree t-spanner, even if all edge weights are positive integers.
  6. A tree spanner (or a minimum tree spanner) of a digraph can be found in linear time.
  7. A digraph contains at most one tree spanner.
  8. The quasi-tree spanner of a weighted digraph can be found in time.

See also

References

  1. ^ Cai, Leizhen; Corneil, Derek G. (1995). "Tree Spanners". SIAM Journal on Discrete Mathematics. 8 (3): 359–387. doi:10.1137/S0895480192237403.
  • Handke, Dagmar; Kortsarz, Guy (2000), "Tree spanners for subgraphs and related tree covering problems", Graph-Theoretic Concepts in Computer Science: 26th International Workshop, WG 2000 Konstanz, Germany, June 15–17, 2000, Proceedings, Lecture Notes in Computer Science, vol. 1928, pp. 206–217, doi:10.1007/3-540-40064-8_20, ISBN 978-3-540-41183-3.
This page was last edited on 20 February 2020, at 21:30
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.